ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltprordil Unicode version

Theorem ltprordil 7673
Description: If a positive real is less than a second positive real, its lower cut is a subset of the second's lower cut. (Contributed by Jim Kingdon, 23-Dec-2019.)
Assertion
Ref Expression
ltprordil  |-  ( A 
<P  B  ->  ( 1st `  A )  C_  ( 1st `  B ) )

Proof of Theorem ltprordil
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelpr 7589 . . . 4  |-  <P  C_  ( P.  X.  P. )
21brel 4716 . . 3  |-  ( A 
<P  B  ->  ( A  e.  P.  /\  B  e.  P. ) )
3 ltdfpr 7590 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  <P  B  <->  E. x  e.  Q.  ( x  e.  ( 2nd `  A
)  /\  x  e.  ( 1st `  B ) ) ) )
43biimpd 144 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  <P  B  ->  E. x  e.  Q.  ( x  e.  ( 2nd `  A )  /\  x  e.  ( 1st `  B ) ) ) )
52, 4mpcom 36 . 2  |-  ( A 
<P  B  ->  E. x  e.  Q.  ( x  e.  ( 2nd `  A
)  /\  x  e.  ( 1st `  B ) ) )
6 simpll 527 . . . . . 6  |-  ( ( ( A  <P  B  /\  ( x  e.  Q.  /\  ( x  e.  ( 2nd `  A )  /\  x  e.  ( 1st `  B ) ) ) )  /\  y  e.  ( 1st `  A ) )  ->  A  <P  B )
7 simpr 110 . . . . . 6  |-  ( ( ( A  <P  B  /\  ( x  e.  Q.  /\  ( x  e.  ( 2nd `  A )  /\  x  e.  ( 1st `  B ) ) ) )  /\  y  e.  ( 1st `  A ) )  -> 
y  e.  ( 1st `  A ) )
8 simprrl 539 . . . . . . 7  |-  ( ( A  <P  B  /\  ( x  e.  Q.  /\  ( x  e.  ( 2nd `  A )  /\  x  e.  ( 1st `  B ) ) ) )  ->  x  e.  ( 2nd `  A ) )
98adantr 276 . . . . . 6  |-  ( ( ( A  <P  B  /\  ( x  e.  Q.  /\  ( x  e.  ( 2nd `  A )  /\  x  e.  ( 1st `  B ) ) ) )  /\  y  e.  ( 1st `  A ) )  ->  x  e.  ( 2nd `  A ) )
102simpld 112 . . . . . . . 8  |-  ( A 
<P  B  ->  A  e. 
P. )
11 prop 7559 . . . . . . . 8  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
1210, 11syl 14 . . . . . . 7  |-  ( A 
<P  B  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
13 prltlu 7571 . . . . . . 7  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  y  e.  ( 1st `  A )  /\  x  e.  ( 2nd `  A
) )  ->  y  <Q  x )
1412, 13syl3an1 1282 . . . . . 6  |-  ( ( A  <P  B  /\  y  e.  ( 1st `  A )  /\  x  e.  ( 2nd `  A
) )  ->  y  <Q  x )
156, 7, 9, 14syl3anc 1249 . . . . 5  |-  ( ( ( A  <P  B  /\  ( x  e.  Q.  /\  ( x  e.  ( 2nd `  A )  /\  x  e.  ( 1st `  B ) ) ) )  /\  y  e.  ( 1st `  A ) )  -> 
y  <Q  x )
16 simprrr 540 . . . . . . 7  |-  ( ( A  <P  B  /\  ( x  e.  Q.  /\  ( x  e.  ( 2nd `  A )  /\  x  e.  ( 1st `  B ) ) ) )  ->  x  e.  ( 1st `  B ) )
1716adantr 276 . . . . . 6  |-  ( ( ( A  <P  B  /\  ( x  e.  Q.  /\  ( x  e.  ( 2nd `  A )  /\  x  e.  ( 1st `  B ) ) ) )  /\  y  e.  ( 1st `  A ) )  ->  x  e.  ( 1st `  B ) )
182simprd 114 . . . . . . . 8  |-  ( A 
<P  B  ->  B  e. 
P. )
19 prop 7559 . . . . . . . 8  |-  ( B  e.  P.  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  e.  P. )
2018, 19syl 14 . . . . . . 7  |-  ( A 
<P  B  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  e.  P. )
21 prcdnql 7568 . . . . . . 7  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  x  e.  ( 1st `  B ) )  -> 
( y  <Q  x  ->  y  e.  ( 1st `  B ) ) )
2220, 21sylan 283 . . . . . 6  |-  ( ( A  <P  B  /\  x  e.  ( 1st `  B ) )  -> 
( y  <Q  x  ->  y  e.  ( 1st `  B ) ) )
236, 17, 22syl2anc 411 . . . . 5  |-  ( ( ( A  <P  B  /\  ( x  e.  Q.  /\  ( x  e.  ( 2nd `  A )  /\  x  e.  ( 1st `  B ) ) ) )  /\  y  e.  ( 1st `  A ) )  -> 
( y  <Q  x  ->  y  e.  ( 1st `  B ) ) )
2415, 23mpd 13 . . . 4  |-  ( ( ( A  <P  B  /\  ( x  e.  Q.  /\  ( x  e.  ( 2nd `  A )  /\  x  e.  ( 1st `  B ) ) ) )  /\  y  e.  ( 1st `  A ) )  -> 
y  e.  ( 1st `  B ) )
2524ex 115 . . 3  |-  ( ( A  <P  B  /\  ( x  e.  Q.  /\  ( x  e.  ( 2nd `  A )  /\  x  e.  ( 1st `  B ) ) ) )  -> 
( y  e.  ( 1st `  A )  ->  y  e.  ( 1st `  B ) ) )
2625ssrdv 3190 . 2  |-  ( ( A  <P  B  /\  ( x  e.  Q.  /\  ( x  e.  ( 2nd `  A )  /\  x  e.  ( 1st `  B ) ) ) )  -> 
( 1st `  A
)  C_  ( 1st `  B ) )
275, 26rexlimddv 2619 1  |-  ( A 
<P  B  ->  ( 1st `  A )  C_  ( 1st `  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2167   E.wrex 2476    C_ wss 3157   <.cop 3626   class class class wbr 4034   ` cfv 5259   1stc1st 6205   2ndc2nd 6206   Q.cnq 7364    <Q cltq 7369   P.cnp 7375    <P cltp 7379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-eprel 4325  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-oadd 6487  df-omul 6488  df-er 6601  df-ec 6603  df-qs 6607  df-ni 7388  df-mi 7390  df-lti 7391  df-enq 7431  df-nqqs 7432  df-ltnqqs 7437  df-inp 7550  df-iltp 7554
This theorem is referenced by:  ltexprlemrl  7694
  Copyright terms: Public domain W3C validator