ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltprordil Unicode version

Theorem ltprordil 7492
Description: If a positive real is less than a second positive real, its lower cut is a subset of the second's lower cut. (Contributed by Jim Kingdon, 23-Dec-2019.)
Assertion
Ref Expression
ltprordil  |-  ( A 
<P  B  ->  ( 1st `  A )  C_  ( 1st `  B ) )

Proof of Theorem ltprordil
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelpr 7408 . . . 4  |-  <P  C_  ( P.  X.  P. )
21brel 4635 . . 3  |-  ( A 
<P  B  ->  ( A  e.  P.  /\  B  e.  P. ) )
3 ltdfpr 7409 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  <P  B  <->  E. x  e.  Q.  ( x  e.  ( 2nd `  A
)  /\  x  e.  ( 1st `  B ) ) ) )
43biimpd 143 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  <P  B  ->  E. x  e.  Q.  ( x  e.  ( 2nd `  A )  /\  x  e.  ( 1st `  B ) ) ) )
52, 4mpcom 36 . 2  |-  ( A 
<P  B  ->  E. x  e.  Q.  ( x  e.  ( 2nd `  A
)  /\  x  e.  ( 1st `  B ) ) )
6 simpll 519 . . . . . 6  |-  ( ( ( A  <P  B  /\  ( x  e.  Q.  /\  ( x  e.  ( 2nd `  A )  /\  x  e.  ( 1st `  B ) ) ) )  /\  y  e.  ( 1st `  A ) )  ->  A  <P  B )
7 simpr 109 . . . . . 6  |-  ( ( ( A  <P  B  /\  ( x  e.  Q.  /\  ( x  e.  ( 2nd `  A )  /\  x  e.  ( 1st `  B ) ) ) )  /\  y  e.  ( 1st `  A ) )  -> 
y  e.  ( 1st `  A ) )
8 simprrl 529 . . . . . . 7  |-  ( ( A  <P  B  /\  ( x  e.  Q.  /\  ( x  e.  ( 2nd `  A )  /\  x  e.  ( 1st `  B ) ) ) )  ->  x  e.  ( 2nd `  A ) )
98adantr 274 . . . . . 6  |-  ( ( ( A  <P  B  /\  ( x  e.  Q.  /\  ( x  e.  ( 2nd `  A )  /\  x  e.  ( 1st `  B ) ) ) )  /\  y  e.  ( 1st `  A ) )  ->  x  e.  ( 2nd `  A ) )
102simpld 111 . . . . . . . 8  |-  ( A 
<P  B  ->  A  e. 
P. )
11 prop 7378 . . . . . . . 8  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
1210, 11syl 14 . . . . . . 7  |-  ( A 
<P  B  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
13 prltlu 7390 . . . . . . 7  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  y  e.  ( 1st `  A )  /\  x  e.  ( 2nd `  A
) )  ->  y  <Q  x )
1412, 13syl3an1 1253 . . . . . 6  |-  ( ( A  <P  B  /\  y  e.  ( 1st `  A )  /\  x  e.  ( 2nd `  A
) )  ->  y  <Q  x )
156, 7, 9, 14syl3anc 1220 . . . . 5  |-  ( ( ( A  <P  B  /\  ( x  e.  Q.  /\  ( x  e.  ( 2nd `  A )  /\  x  e.  ( 1st `  B ) ) ) )  /\  y  e.  ( 1st `  A ) )  -> 
y  <Q  x )
16 simprrr 530 . . . . . . 7  |-  ( ( A  <P  B  /\  ( x  e.  Q.  /\  ( x  e.  ( 2nd `  A )  /\  x  e.  ( 1st `  B ) ) ) )  ->  x  e.  ( 1st `  B ) )
1716adantr 274 . . . . . 6  |-  ( ( ( A  <P  B  /\  ( x  e.  Q.  /\  ( x  e.  ( 2nd `  A )  /\  x  e.  ( 1st `  B ) ) ) )  /\  y  e.  ( 1st `  A ) )  ->  x  e.  ( 1st `  B ) )
182simprd 113 . . . . . . . 8  |-  ( A 
<P  B  ->  B  e. 
P. )
19 prop 7378 . . . . . . . 8  |-  ( B  e.  P.  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  e.  P. )
2018, 19syl 14 . . . . . . 7  |-  ( A 
<P  B  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  e.  P. )
21 prcdnql 7387 . . . . . . 7  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  x  e.  ( 1st `  B ) )  -> 
( y  <Q  x  ->  y  e.  ( 1st `  B ) ) )
2220, 21sylan 281 . . . . . 6  |-  ( ( A  <P  B  /\  x  e.  ( 1st `  B ) )  -> 
( y  <Q  x  ->  y  e.  ( 1st `  B ) ) )
236, 17, 22syl2anc 409 . . . . 5  |-  ( ( ( A  <P  B  /\  ( x  e.  Q.  /\  ( x  e.  ( 2nd `  A )  /\  x  e.  ( 1st `  B ) ) ) )  /\  y  e.  ( 1st `  A ) )  -> 
( y  <Q  x  ->  y  e.  ( 1st `  B ) ) )
2415, 23mpd 13 . . . 4  |-  ( ( ( A  <P  B  /\  ( x  e.  Q.  /\  ( x  e.  ( 2nd `  A )  /\  x  e.  ( 1st `  B ) ) ) )  /\  y  e.  ( 1st `  A ) )  -> 
y  e.  ( 1st `  B ) )
2524ex 114 . . 3  |-  ( ( A  <P  B  /\  ( x  e.  Q.  /\  ( x  e.  ( 2nd `  A )  /\  x  e.  ( 1st `  B ) ) ) )  -> 
( y  e.  ( 1st `  A )  ->  y  e.  ( 1st `  B ) ) )
2625ssrdv 3134 . 2  |-  ( ( A  <P  B  /\  ( x  e.  Q.  /\  ( x  e.  ( 2nd `  A )  /\  x  e.  ( 1st `  B ) ) ) )  -> 
( 1st `  A
)  C_  ( 1st `  B ) )
275, 26rexlimddv 2579 1  |-  ( A 
<P  B  ->  ( 1st `  A )  C_  ( 1st `  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 2128   E.wrex 2436    C_ wss 3102   <.cop 3563   class class class wbr 3965   ` cfv 5167   1stc1st 6080   2ndc2nd 6081   Q.cnq 7183    <Q cltq 7188   P.cnp 7194    <P cltp 7198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-nul 4090  ax-pow 4134  ax-pr 4168  ax-un 4392  ax-setind 4494  ax-iinf 4545
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-eprel 4248  df-id 4252  df-po 4255  df-iso 4256  df-iord 4325  df-on 4327  df-suc 4330  df-iom 4548  df-xp 4589  df-rel 4590  df-cnv 4591  df-co 4592  df-dm 4593  df-rn 4594  df-res 4595  df-ima 4596  df-iota 5132  df-fun 5169  df-fn 5170  df-f 5171  df-f1 5172  df-fo 5173  df-f1o 5174  df-fv 5175  df-ov 5821  df-oprab 5822  df-mpo 5823  df-1st 6082  df-2nd 6083  df-recs 6246  df-irdg 6311  df-oadd 6361  df-omul 6362  df-er 6473  df-ec 6475  df-qs 6479  df-ni 7207  df-mi 7209  df-lti 7210  df-enq 7250  df-nqqs 7251  df-ltnqqs 7256  df-inp 7369  df-iltp 7373
This theorem is referenced by:  ltexprlemrl  7513
  Copyright terms: Public domain W3C validator