ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltprordil Unicode version

Theorem ltprordil 7601
Description: If a positive real is less than a second positive real, its lower cut is a subset of the second's lower cut. (Contributed by Jim Kingdon, 23-Dec-2019.)
Assertion
Ref Expression
ltprordil  |-  ( A 
<P  B  ->  ( 1st `  A )  C_  ( 1st `  B ) )

Proof of Theorem ltprordil
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelpr 7517 . . . 4  |-  <P  C_  ( P.  X.  P. )
21brel 4690 . . 3  |-  ( A 
<P  B  ->  ( A  e.  P.  /\  B  e.  P. ) )
3 ltdfpr 7518 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  <P  B  <->  E. x  e.  Q.  ( x  e.  ( 2nd `  A
)  /\  x  e.  ( 1st `  B ) ) ) )
43biimpd 144 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  <P  B  ->  E. x  e.  Q.  ( x  e.  ( 2nd `  A )  /\  x  e.  ( 1st `  B ) ) ) )
52, 4mpcom 36 . 2  |-  ( A 
<P  B  ->  E. x  e.  Q.  ( x  e.  ( 2nd `  A
)  /\  x  e.  ( 1st `  B ) ) )
6 simpll 527 . . . . . 6  |-  ( ( ( A  <P  B  /\  ( x  e.  Q.  /\  ( x  e.  ( 2nd `  A )  /\  x  e.  ( 1st `  B ) ) ) )  /\  y  e.  ( 1st `  A ) )  ->  A  <P  B )
7 simpr 110 . . . . . 6  |-  ( ( ( A  <P  B  /\  ( x  e.  Q.  /\  ( x  e.  ( 2nd `  A )  /\  x  e.  ( 1st `  B ) ) ) )  /\  y  e.  ( 1st `  A ) )  -> 
y  e.  ( 1st `  A ) )
8 simprrl 539 . . . . . . 7  |-  ( ( A  <P  B  /\  ( x  e.  Q.  /\  ( x  e.  ( 2nd `  A )  /\  x  e.  ( 1st `  B ) ) ) )  ->  x  e.  ( 2nd `  A ) )
98adantr 276 . . . . . 6  |-  ( ( ( A  <P  B  /\  ( x  e.  Q.  /\  ( x  e.  ( 2nd `  A )  /\  x  e.  ( 1st `  B ) ) ) )  /\  y  e.  ( 1st `  A ) )  ->  x  e.  ( 2nd `  A ) )
102simpld 112 . . . . . . . 8  |-  ( A 
<P  B  ->  A  e. 
P. )
11 prop 7487 . . . . . . . 8  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
1210, 11syl 14 . . . . . . 7  |-  ( A 
<P  B  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
13 prltlu 7499 . . . . . . 7  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  y  e.  ( 1st `  A )  /\  x  e.  ( 2nd `  A
) )  ->  y  <Q  x )
1412, 13syl3an1 1281 . . . . . 6  |-  ( ( A  <P  B  /\  y  e.  ( 1st `  A )  /\  x  e.  ( 2nd `  A
) )  ->  y  <Q  x )
156, 7, 9, 14syl3anc 1248 . . . . 5  |-  ( ( ( A  <P  B  /\  ( x  e.  Q.  /\  ( x  e.  ( 2nd `  A )  /\  x  e.  ( 1st `  B ) ) ) )  /\  y  e.  ( 1st `  A ) )  -> 
y  <Q  x )
16 simprrr 540 . . . . . . 7  |-  ( ( A  <P  B  /\  ( x  e.  Q.  /\  ( x  e.  ( 2nd `  A )  /\  x  e.  ( 1st `  B ) ) ) )  ->  x  e.  ( 1st `  B ) )
1716adantr 276 . . . . . 6  |-  ( ( ( A  <P  B  /\  ( x  e.  Q.  /\  ( x  e.  ( 2nd `  A )  /\  x  e.  ( 1st `  B ) ) ) )  /\  y  e.  ( 1st `  A ) )  ->  x  e.  ( 1st `  B ) )
182simprd 114 . . . . . . . 8  |-  ( A 
<P  B  ->  B  e. 
P. )
19 prop 7487 . . . . . . . 8  |-  ( B  e.  P.  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  e.  P. )
2018, 19syl 14 . . . . . . 7  |-  ( A 
<P  B  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  e.  P. )
21 prcdnql 7496 . . . . . . 7  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  x  e.  ( 1st `  B ) )  -> 
( y  <Q  x  ->  y  e.  ( 1st `  B ) ) )
2220, 21sylan 283 . . . . . 6  |-  ( ( A  <P  B  /\  x  e.  ( 1st `  B ) )  -> 
( y  <Q  x  ->  y  e.  ( 1st `  B ) ) )
236, 17, 22syl2anc 411 . . . . 5  |-  ( ( ( A  <P  B  /\  ( x  e.  Q.  /\  ( x  e.  ( 2nd `  A )  /\  x  e.  ( 1st `  B ) ) ) )  /\  y  e.  ( 1st `  A ) )  -> 
( y  <Q  x  ->  y  e.  ( 1st `  B ) ) )
2415, 23mpd 13 . . . 4  |-  ( ( ( A  <P  B  /\  ( x  e.  Q.  /\  ( x  e.  ( 2nd `  A )  /\  x  e.  ( 1st `  B ) ) ) )  /\  y  e.  ( 1st `  A ) )  -> 
y  e.  ( 1st `  B ) )
2524ex 115 . . 3  |-  ( ( A  <P  B  /\  ( x  e.  Q.  /\  ( x  e.  ( 2nd `  A )  /\  x  e.  ( 1st `  B ) ) ) )  -> 
( y  e.  ( 1st `  A )  ->  y  e.  ( 1st `  B ) ) )
2625ssrdv 3173 . 2  |-  ( ( A  <P  B  /\  ( x  e.  Q.  /\  ( x  e.  ( 2nd `  A )  /\  x  e.  ( 1st `  B ) ) ) )  -> 
( 1st `  A
)  C_  ( 1st `  B ) )
275, 26rexlimddv 2609 1  |-  ( A 
<P  B  ->  ( 1st `  A )  C_  ( 1st `  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2158   E.wrex 2466    C_ wss 3141   <.cop 3607   class class class wbr 4015   ` cfv 5228   1stc1st 6152   2ndc2nd 6153   Q.cnq 7292    <Q cltq 7297   P.cnp 7303    <P cltp 7307
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-nul 4141  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-iinf 4599
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-ral 2470  df-rex 2471  df-reu 2472  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-tr 4114  df-eprel 4301  df-id 4305  df-po 4308  df-iso 4309  df-iord 4378  df-on 4380  df-suc 4383  df-iom 4602  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-ov 5891  df-oprab 5892  df-mpo 5893  df-1st 6154  df-2nd 6155  df-recs 6319  df-irdg 6384  df-oadd 6434  df-omul 6435  df-er 6548  df-ec 6550  df-qs 6554  df-ni 7316  df-mi 7318  df-lti 7319  df-enq 7359  df-nqqs 7360  df-ltnqqs 7365  df-inp 7478  df-iltp 7482
This theorem is referenced by:  ltexprlemrl  7622
  Copyright terms: Public domain W3C validator