Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ltprordil | Unicode version |
Description: If a positive real is less than a second positive real, its lower cut is a subset of the second's lower cut. (Contributed by Jim Kingdon, 23-Dec-2019.) |
Ref | Expression |
---|---|
ltprordil |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltrelpr 7408 | . . . 4 | |
2 | 1 | brel 4635 | . . 3 |
3 | ltdfpr 7409 | . . . 4 | |
4 | 3 | biimpd 143 | . . 3 |
5 | 2, 4 | mpcom 36 | . 2 |
6 | simpll 519 | . . . . . 6 | |
7 | simpr 109 | . . . . . 6 | |
8 | simprrl 529 | . . . . . . 7 | |
9 | 8 | adantr 274 | . . . . . 6 |
10 | 2 | simpld 111 | . . . . . . . 8 |
11 | prop 7378 | . . . . . . . 8 | |
12 | 10, 11 | syl 14 | . . . . . . 7 |
13 | prltlu 7390 | . . . . . . 7 | |
14 | 12, 13 | syl3an1 1253 | . . . . . 6 |
15 | 6, 7, 9, 14 | syl3anc 1220 | . . . . 5 |
16 | simprrr 530 | . . . . . . 7 | |
17 | 16 | adantr 274 | . . . . . 6 |
18 | 2 | simprd 113 | . . . . . . . 8 |
19 | prop 7378 | . . . . . . . 8 | |
20 | 18, 19 | syl 14 | . . . . . . 7 |
21 | prcdnql 7387 | . . . . . . 7 | |
22 | 20, 21 | sylan 281 | . . . . . 6 |
23 | 6, 17, 22 | syl2anc 409 | . . . . 5 |
24 | 15, 23 | mpd 13 | . . . 4 |
25 | 24 | ex 114 | . . 3 |
26 | 25 | ssrdv 3134 | . 2 |
27 | 5, 26 | rexlimddv 2579 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wcel 2128 wrex 2436 wss 3102 cop 3563 class class class wbr 3965 cfv 5167 c1st 6080 c2nd 6081 cnq 7183 cltq 7188 cnp 7194 cltp 7198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4079 ax-sep 4082 ax-nul 4090 ax-pow 4134 ax-pr 4168 ax-un 4392 ax-setind 4494 ax-iinf 4545 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-tr 4063 df-eprel 4248 df-id 4252 df-po 4255 df-iso 4256 df-iord 4325 df-on 4327 df-suc 4330 df-iom 4548 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-rn 4594 df-res 4595 df-ima 4596 df-iota 5132 df-fun 5169 df-fn 5170 df-f 5171 df-f1 5172 df-fo 5173 df-f1o 5174 df-fv 5175 df-ov 5821 df-oprab 5822 df-mpo 5823 df-1st 6082 df-2nd 6083 df-recs 6246 df-irdg 6311 df-oadd 6361 df-omul 6362 df-er 6473 df-ec 6475 df-qs 6479 df-ni 7207 df-mi 7209 df-lti 7210 df-enq 7250 df-nqqs 7251 df-ltnqqs 7256 df-inp 7369 df-iltp 7373 |
This theorem is referenced by: ltexprlemrl 7513 |
Copyright terms: Public domain | W3C validator |