Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mgmplusf | GIF version |
Description: The group addition function of a magma is a function into its base set. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revisd by AV, 28-Jan-2020.) |
Ref | Expression |
---|---|
mgmplusf.1 | ⊢ 𝐵 = (Base‘𝑀) |
mgmplusf.2 | ⊢ ⨣ = (+𝑓‘𝑀) |
Ref | Expression |
---|---|
mgmplusf | ⊢ (𝑀 ∈ Mgm → ⨣ :(𝐵 × 𝐵)⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mgmplusf.1 | . . . . . 6 ⊢ 𝐵 = (Base‘𝑀) | |
2 | eqid 2175 | . . . . . 6 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
3 | 1, 2 | mgmcl 12642 | . . . . 5 ⊢ ((𝑀 ∈ Mgm ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥(+g‘𝑀)𝑦) ∈ 𝐵) |
4 | 3 | 3expb 1204 | . . . 4 ⊢ ((𝑀 ∈ Mgm ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝑀)𝑦) ∈ 𝐵) |
5 | 4 | ralrimivva 2557 | . . 3 ⊢ (𝑀 ∈ Mgm → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝑀)𝑦) ∈ 𝐵) |
6 | eqid 2175 | . . . 4 ⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥(+g‘𝑀)𝑦)) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥(+g‘𝑀)𝑦)) | |
7 | 6 | fmpo 6192 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝑀)𝑦) ∈ 𝐵 ↔ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥(+g‘𝑀)𝑦)):(𝐵 × 𝐵)⟶𝐵) |
8 | 5, 7 | sylib 122 | . 2 ⊢ (𝑀 ∈ Mgm → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥(+g‘𝑀)𝑦)):(𝐵 × 𝐵)⟶𝐵) |
9 | mgmplusf.2 | . . . 4 ⊢ ⨣ = (+𝑓‘𝑀) | |
10 | 1, 2, 9 | plusffvalg 12645 | . . 3 ⊢ (𝑀 ∈ Mgm → ⨣ = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥(+g‘𝑀)𝑦))) |
11 | 10 | feq1d 5344 | . 2 ⊢ (𝑀 ∈ Mgm → ( ⨣ :(𝐵 × 𝐵)⟶𝐵 ↔ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥(+g‘𝑀)𝑦)):(𝐵 × 𝐵)⟶𝐵)) |
12 | 8, 11 | mpbird 167 | 1 ⊢ (𝑀 ∈ Mgm → ⨣ :(𝐵 × 𝐵)⟶𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ∈ wcel 2146 ∀wral 2453 × cxp 4618 ⟶wf 5204 ‘cfv 5208 (class class class)co 5865 ∈ cmpo 5867 Basecbs 12427 +gcplusg 12491 +𝑓cplusf 12636 Mgmcmgm 12637 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-coll 4113 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-cnex 7877 ax-resscn 7878 ax-1re 7880 ax-addrcl 7883 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-reu 2460 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-iun 3884 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-f1 5213 df-fo 5214 df-f1o 5215 df-fv 5216 df-ov 5868 df-oprab 5869 df-mpo 5870 df-1st 6131 df-2nd 6132 df-inn 8891 df-2 8949 df-ndx 12430 df-slot 12431 df-base 12433 df-plusg 12504 df-plusf 12638 df-mgm 12639 |
This theorem is referenced by: mgmb1mgm1 12651 mndplusf 12698 |
Copyright terms: Public domain | W3C validator |