ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mgmplusf GIF version

Theorem mgmplusf 13273
Description: The group addition function of a magma is a function into its base set. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revisd by AV, 28-Jan-2020.)
Hypotheses
Ref Expression
mgmplusf.1 𝐵 = (Base‘𝑀)
mgmplusf.2 = (+𝑓𝑀)
Assertion
Ref Expression
mgmplusf (𝑀 ∈ Mgm → :(𝐵 × 𝐵)⟶𝐵)

Proof of Theorem mgmplusf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mgmplusf.1 . . . . . 6 𝐵 = (Base‘𝑀)
2 eqid 2206 . . . . . 6 (+g𝑀) = (+g𝑀)
31, 2mgmcl 13266 . . . . 5 ((𝑀 ∈ Mgm ∧ 𝑥𝐵𝑦𝐵) → (𝑥(+g𝑀)𝑦) ∈ 𝐵)
433expb 1207 . . . 4 ((𝑀 ∈ Mgm ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝑀)𝑦) ∈ 𝐵)
54ralrimivva 2589 . . 3 (𝑀 ∈ Mgm → ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝑀)𝑦) ∈ 𝐵)
6 eqid 2206 . . . 4 (𝑥𝐵, 𝑦𝐵 ↦ (𝑥(+g𝑀)𝑦)) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥(+g𝑀)𝑦))
76fmpo 6300 . . 3 (∀𝑥𝐵𝑦𝐵 (𝑥(+g𝑀)𝑦) ∈ 𝐵 ↔ (𝑥𝐵, 𝑦𝐵 ↦ (𝑥(+g𝑀)𝑦)):(𝐵 × 𝐵)⟶𝐵)
85, 7sylib 122 . 2 (𝑀 ∈ Mgm → (𝑥𝐵, 𝑦𝐵 ↦ (𝑥(+g𝑀)𝑦)):(𝐵 × 𝐵)⟶𝐵)
9 mgmplusf.2 . . . 4 = (+𝑓𝑀)
101, 2, 9plusffvalg 13269 . . 3 (𝑀 ∈ Mgm → = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥(+g𝑀)𝑦)))
1110feq1d 5422 . 2 (𝑀 ∈ Mgm → ( :(𝐵 × 𝐵)⟶𝐵 ↔ (𝑥𝐵, 𝑦𝐵 ↦ (𝑥(+g𝑀)𝑦)):(𝐵 × 𝐵)⟶𝐵))
128, 11mpbird 167 1 (𝑀 ∈ Mgm → :(𝐵 × 𝐵)⟶𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  wcel 2177  wral 2485   × cxp 4681  wf 5276  cfv 5280  (class class class)co 5957  cmpo 5959  Basecbs 12907  +gcplusg 12984  +𝑓cplusf 13260  Mgmcmgm 13261
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-cnex 8036  ax-resscn 8037  ax-1re 8039  ax-addrcl 8042
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-inn 9057  df-2 9115  df-ndx 12910  df-slot 12911  df-base 12913  df-plusg 12997  df-plusf 13262  df-mgm 13263
This theorem is referenced by:  mgmb1mgm1  13275  mndplusf  13340
  Copyright terms: Public domain W3C validator