![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mgmplusf | GIF version |
Description: The group addition function of a magma is a function into its base set. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revisd by AV, 28-Jan-2020.) |
Ref | Expression |
---|---|
mgmplusf.1 | ⊢ 𝐵 = (Base‘𝑀) |
mgmplusf.2 | ⊢ ⨣ = (+𝑓‘𝑀) |
Ref | Expression |
---|---|
mgmplusf | ⊢ (𝑀 ∈ Mgm → ⨣ :(𝐵 × 𝐵)⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mgmplusf.1 | . . . . . 6 ⊢ 𝐵 = (Base‘𝑀) | |
2 | eqid 2189 | . . . . . 6 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
3 | 1, 2 | mgmcl 12838 | . . . . 5 ⊢ ((𝑀 ∈ Mgm ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥(+g‘𝑀)𝑦) ∈ 𝐵) |
4 | 3 | 3expb 1206 | . . . 4 ⊢ ((𝑀 ∈ Mgm ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝑀)𝑦) ∈ 𝐵) |
5 | 4 | ralrimivva 2572 | . . 3 ⊢ (𝑀 ∈ Mgm → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝑀)𝑦) ∈ 𝐵) |
6 | eqid 2189 | . . . 4 ⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥(+g‘𝑀)𝑦)) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥(+g‘𝑀)𝑦)) | |
7 | 6 | fmpo 6227 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝑀)𝑦) ∈ 𝐵 ↔ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥(+g‘𝑀)𝑦)):(𝐵 × 𝐵)⟶𝐵) |
8 | 5, 7 | sylib 122 | . 2 ⊢ (𝑀 ∈ Mgm → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥(+g‘𝑀)𝑦)):(𝐵 × 𝐵)⟶𝐵) |
9 | mgmplusf.2 | . . . 4 ⊢ ⨣ = (+𝑓‘𝑀) | |
10 | 1, 2, 9 | plusffvalg 12841 | . . 3 ⊢ (𝑀 ∈ Mgm → ⨣ = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥(+g‘𝑀)𝑦))) |
11 | 10 | feq1d 5371 | . 2 ⊢ (𝑀 ∈ Mgm → ( ⨣ :(𝐵 × 𝐵)⟶𝐵 ↔ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥(+g‘𝑀)𝑦)):(𝐵 × 𝐵)⟶𝐵)) |
12 | 8, 11 | mpbird 167 | 1 ⊢ (𝑀 ∈ Mgm → ⨣ :(𝐵 × 𝐵)⟶𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2160 ∀wral 2468 × cxp 4642 ⟶wf 5231 ‘cfv 5235 (class class class)co 5897 ∈ cmpo 5899 Basecbs 12515 +gcplusg 12592 +𝑓cplusf 12832 Mgmcmgm 12833 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-cnex 7933 ax-resscn 7934 ax-1re 7936 ax-addrcl 7939 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ral 2473 df-rex 2474 df-reu 2475 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-id 4311 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-res 4656 df-ima 4657 df-iota 5196 df-fun 5237 df-fn 5238 df-f 5239 df-f1 5240 df-fo 5241 df-f1o 5242 df-fv 5243 df-ov 5900 df-oprab 5901 df-mpo 5902 df-1st 6166 df-2nd 6167 df-inn 8951 df-2 9009 df-ndx 12518 df-slot 12519 df-base 12521 df-plusg 12605 df-plusf 12834 df-mgm 12835 |
This theorem is referenced by: mgmb1mgm1 12847 mndplusf 12909 |
Copyright terms: Public domain | W3C validator |