ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mgmplusf GIF version

Theorem mgmplusf 12649
Description: The group addition function of a magma is a function into its base set. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revisd by AV, 28-Jan-2020.)
Hypotheses
Ref Expression
mgmplusf.1 𝐵 = (Base‘𝑀)
mgmplusf.2 = (+𝑓𝑀)
Assertion
Ref Expression
mgmplusf (𝑀 ∈ Mgm → :(𝐵 × 𝐵)⟶𝐵)

Proof of Theorem mgmplusf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mgmplusf.1 . . . . . 6 𝐵 = (Base‘𝑀)
2 eqid 2175 . . . . . 6 (+g𝑀) = (+g𝑀)
31, 2mgmcl 12642 . . . . 5 ((𝑀 ∈ Mgm ∧ 𝑥𝐵𝑦𝐵) → (𝑥(+g𝑀)𝑦) ∈ 𝐵)
433expb 1204 . . . 4 ((𝑀 ∈ Mgm ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝑀)𝑦) ∈ 𝐵)
54ralrimivva 2557 . . 3 (𝑀 ∈ Mgm → ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝑀)𝑦) ∈ 𝐵)
6 eqid 2175 . . . 4 (𝑥𝐵, 𝑦𝐵 ↦ (𝑥(+g𝑀)𝑦)) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥(+g𝑀)𝑦))
76fmpo 6192 . . 3 (∀𝑥𝐵𝑦𝐵 (𝑥(+g𝑀)𝑦) ∈ 𝐵 ↔ (𝑥𝐵, 𝑦𝐵 ↦ (𝑥(+g𝑀)𝑦)):(𝐵 × 𝐵)⟶𝐵)
85, 7sylib 122 . 2 (𝑀 ∈ Mgm → (𝑥𝐵, 𝑦𝐵 ↦ (𝑥(+g𝑀)𝑦)):(𝐵 × 𝐵)⟶𝐵)
9 mgmplusf.2 . . . 4 = (+𝑓𝑀)
101, 2, 9plusffvalg 12645 . . 3 (𝑀 ∈ Mgm → = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥(+g𝑀)𝑦)))
1110feq1d 5344 . 2 (𝑀 ∈ Mgm → ( :(𝐵 × 𝐵)⟶𝐵 ↔ (𝑥𝐵, 𝑦𝐵 ↦ (𝑥(+g𝑀)𝑦)):(𝐵 × 𝐵)⟶𝐵))
128, 11mpbird 167 1 (𝑀 ∈ Mgm → :(𝐵 × 𝐵)⟶𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1353  wcel 2146  wral 2453   × cxp 4618  wf 5204  cfv 5208  (class class class)co 5865  cmpo 5867  Basecbs 12427  +gcplusg 12491  +𝑓cplusf 12636  Mgmcmgm 12637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-coll 4113  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-cnex 7877  ax-resscn 7878  ax-1re 7880  ax-addrcl 7883
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-reu 2460  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-ov 5868  df-oprab 5869  df-mpo 5870  df-1st 6131  df-2nd 6132  df-inn 8891  df-2 8949  df-ndx 12430  df-slot 12431  df-base 12433  df-plusg 12504  df-plusf 12638  df-mgm 12639
This theorem is referenced by:  mgmb1mgm1  12651  mndplusf  12698
  Copyright terms: Public domain W3C validator