| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mgmplusf | GIF version | ||
| Description: The group addition function of a magma is a function into its base set. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revisd by AV, 28-Jan-2020.) |
| Ref | Expression |
|---|---|
| mgmplusf.1 | ⊢ 𝐵 = (Base‘𝑀) |
| mgmplusf.2 | ⊢ ⨣ = (+𝑓‘𝑀) |
| Ref | Expression |
|---|---|
| mgmplusf | ⊢ (𝑀 ∈ Mgm → ⨣ :(𝐵 × 𝐵)⟶𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mgmplusf.1 | . . . . . 6 ⊢ 𝐵 = (Base‘𝑀) | |
| 2 | eqid 2229 | . . . . . 6 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
| 3 | 1, 2 | mgmcl 13387 | . . . . 5 ⊢ ((𝑀 ∈ Mgm ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥(+g‘𝑀)𝑦) ∈ 𝐵) |
| 4 | 3 | 3expb 1228 | . . . 4 ⊢ ((𝑀 ∈ Mgm ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝑀)𝑦) ∈ 𝐵) |
| 5 | 4 | ralrimivva 2612 | . . 3 ⊢ (𝑀 ∈ Mgm → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝑀)𝑦) ∈ 𝐵) |
| 6 | eqid 2229 | . . . 4 ⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥(+g‘𝑀)𝑦)) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥(+g‘𝑀)𝑦)) | |
| 7 | 6 | fmpo 6345 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝑀)𝑦) ∈ 𝐵 ↔ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥(+g‘𝑀)𝑦)):(𝐵 × 𝐵)⟶𝐵) |
| 8 | 5, 7 | sylib 122 | . 2 ⊢ (𝑀 ∈ Mgm → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥(+g‘𝑀)𝑦)):(𝐵 × 𝐵)⟶𝐵) |
| 9 | mgmplusf.2 | . . . 4 ⊢ ⨣ = (+𝑓‘𝑀) | |
| 10 | 1, 2, 9 | plusffvalg 13390 | . . 3 ⊢ (𝑀 ∈ Mgm → ⨣ = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥(+g‘𝑀)𝑦))) |
| 11 | 10 | feq1d 5459 | . 2 ⊢ (𝑀 ∈ Mgm → ( ⨣ :(𝐵 × 𝐵)⟶𝐵 ↔ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥(+g‘𝑀)𝑦)):(𝐵 × 𝐵)⟶𝐵)) |
| 12 | 8, 11 | mpbird 167 | 1 ⊢ (𝑀 ∈ Mgm → ⨣ :(𝐵 × 𝐵)⟶𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 ∀wral 2508 × cxp 4716 ⟶wf 5313 ‘cfv 5317 (class class class)co 6000 ∈ cmpo 6002 Basecbs 13027 +gcplusg 13105 +𝑓cplusf 13381 Mgmcmgm 13382 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-cnex 8086 ax-resscn 8087 ax-1re 8089 ax-addrcl 8092 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-inn 9107 df-2 9165 df-ndx 13030 df-slot 13031 df-base 13033 df-plusg 13118 df-plusf 13383 df-mgm 13384 |
| This theorem is referenced by: mgmb1mgm1 13396 mndplusf 13461 |
| Copyright terms: Public domain | W3C validator |