ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mgmplusf GIF version

Theorem mgmplusf 12620
Description: The group addition function of a magma is a function into its base set. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revisd by AV, 28-Jan-2020.)
Hypotheses
Ref Expression
mgmplusf.1 𝐵 = (Base‘𝑀)
mgmplusf.2 = (+𝑓𝑀)
Assertion
Ref Expression
mgmplusf (𝑀 ∈ Mgm → :(𝐵 × 𝐵)⟶𝐵)

Proof of Theorem mgmplusf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mgmplusf.1 . . . . . 6 𝐵 = (Base‘𝑀)
2 eqid 2170 . . . . . 6 (+g𝑀) = (+g𝑀)
31, 2mgmcl 12613 . . . . 5 ((𝑀 ∈ Mgm ∧ 𝑥𝐵𝑦𝐵) → (𝑥(+g𝑀)𝑦) ∈ 𝐵)
433expb 1199 . . . 4 ((𝑀 ∈ Mgm ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝑀)𝑦) ∈ 𝐵)
54ralrimivva 2552 . . 3 (𝑀 ∈ Mgm → ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝑀)𝑦) ∈ 𝐵)
6 eqid 2170 . . . 4 (𝑥𝐵, 𝑦𝐵 ↦ (𝑥(+g𝑀)𝑦)) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥(+g𝑀)𝑦))
76fmpo 6180 . . 3 (∀𝑥𝐵𝑦𝐵 (𝑥(+g𝑀)𝑦) ∈ 𝐵 ↔ (𝑥𝐵, 𝑦𝐵 ↦ (𝑥(+g𝑀)𝑦)):(𝐵 × 𝐵)⟶𝐵)
85, 7sylib 121 . 2 (𝑀 ∈ Mgm → (𝑥𝐵, 𝑦𝐵 ↦ (𝑥(+g𝑀)𝑦)):(𝐵 × 𝐵)⟶𝐵)
9 mgmplusf.2 . . . 4 = (+𝑓𝑀)
101, 2, 9plusffvalg 12616 . . 3 (𝑀 ∈ Mgm → = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥(+g𝑀)𝑦)))
1110feq1d 5334 . 2 (𝑀 ∈ Mgm → ( :(𝐵 × 𝐵)⟶𝐵 ↔ (𝑥𝐵, 𝑦𝐵 ↦ (𝑥(+g𝑀)𝑦)):(𝐵 × 𝐵)⟶𝐵))
128, 11mpbird 166 1 (𝑀 ∈ Mgm → :(𝐵 × 𝐵)⟶𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1348  wcel 2141  wral 2448   × cxp 4609  wf 5194  cfv 5198  (class class class)co 5853  cmpo 5855  Basecbs 12416  +gcplusg 12480  +𝑓cplusf 12607  Mgmcmgm 12608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-cnex 7865  ax-resscn 7866  ax-1re 7868  ax-addrcl 7871
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-inn 8879  df-2 8937  df-ndx 12419  df-slot 12420  df-base 12422  df-plusg 12493  df-plusf 12609  df-mgm 12610
This theorem is referenced by:  mgmb1mgm1  12622  mndplusf  12669
  Copyright terms: Public domain W3C validator