ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mgmplusf GIF version

Theorem mgmplusf 13394
Description: The group addition function of a magma is a function into its base set. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revisd by AV, 28-Jan-2020.)
Hypotheses
Ref Expression
mgmplusf.1 𝐵 = (Base‘𝑀)
mgmplusf.2 = (+𝑓𝑀)
Assertion
Ref Expression
mgmplusf (𝑀 ∈ Mgm → :(𝐵 × 𝐵)⟶𝐵)

Proof of Theorem mgmplusf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mgmplusf.1 . . . . . 6 𝐵 = (Base‘𝑀)
2 eqid 2229 . . . . . 6 (+g𝑀) = (+g𝑀)
31, 2mgmcl 13387 . . . . 5 ((𝑀 ∈ Mgm ∧ 𝑥𝐵𝑦𝐵) → (𝑥(+g𝑀)𝑦) ∈ 𝐵)
433expb 1228 . . . 4 ((𝑀 ∈ Mgm ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝑀)𝑦) ∈ 𝐵)
54ralrimivva 2612 . . 3 (𝑀 ∈ Mgm → ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝑀)𝑦) ∈ 𝐵)
6 eqid 2229 . . . 4 (𝑥𝐵, 𝑦𝐵 ↦ (𝑥(+g𝑀)𝑦)) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥(+g𝑀)𝑦))
76fmpo 6345 . . 3 (∀𝑥𝐵𝑦𝐵 (𝑥(+g𝑀)𝑦) ∈ 𝐵 ↔ (𝑥𝐵, 𝑦𝐵 ↦ (𝑥(+g𝑀)𝑦)):(𝐵 × 𝐵)⟶𝐵)
85, 7sylib 122 . 2 (𝑀 ∈ Mgm → (𝑥𝐵, 𝑦𝐵 ↦ (𝑥(+g𝑀)𝑦)):(𝐵 × 𝐵)⟶𝐵)
9 mgmplusf.2 . . . 4 = (+𝑓𝑀)
101, 2, 9plusffvalg 13390 . . 3 (𝑀 ∈ Mgm → = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥(+g𝑀)𝑦)))
1110feq1d 5459 . 2 (𝑀 ∈ Mgm → ( :(𝐵 × 𝐵)⟶𝐵 ↔ (𝑥𝐵, 𝑦𝐵 ↦ (𝑥(+g𝑀)𝑦)):(𝐵 × 𝐵)⟶𝐵))
128, 11mpbird 167 1 (𝑀 ∈ Mgm → :(𝐵 × 𝐵)⟶𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  wcel 2200  wral 2508   × cxp 4716  wf 5313  cfv 5317  (class class class)co 6000  cmpo 6002  Basecbs 13027  +gcplusg 13105  +𝑓cplusf 13381  Mgmcmgm 13382
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-cnex 8086  ax-resscn 8087  ax-1re 8089  ax-addrcl 8092
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-inn 9107  df-2 9165  df-ndx 13030  df-slot 13031  df-base 13033  df-plusg 13118  df-plusf 13383  df-mgm 13384
This theorem is referenced by:  mgmb1mgm1  13396  mndplusf  13461
  Copyright terms: Public domain W3C validator