ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulpipq Unicode version

Theorem mulpipq 6992
Description: Multiplication of positive fractions in terms of positive integers. (Contributed by NM, 28-Aug-1995.) (Revised by Mario Carneiro, 8-May-2013.)
Assertion
Ref Expression
mulpipq  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. )
)  ->  ( <. A ,  B >.  .pQ  <. C ,  D >. )  =  <. ( A  .N  C ) ,  ( B  .N  D ) >. )

Proof of Theorem mulpipq
StepHypRef Expression
1 opelxpi 4483 . . 3  |-  ( ( A  e.  N.  /\  B  e.  N. )  -> 
<. A ,  B >.  e.  ( N.  X.  N. ) )
2 opelxpi 4483 . . 3  |-  ( ( C  e.  N.  /\  D  e.  N. )  -> 
<. C ,  D >.  e.  ( N.  X.  N. ) )
3 mulpipq2 6991 . . 3  |-  ( (
<. A ,  B >.  e.  ( N.  X.  N. )  /\  <. C ,  D >.  e.  ( N.  X.  N. ) )  ->  ( <. A ,  B >.  .pQ 
<. C ,  D >. )  =  <. ( ( 1st `  <. A ,  B >. )  .N  ( 1st `  <. C ,  D >. ) ) ,  ( ( 2nd `  <. A ,  B >. )  .N  ( 2nd `  <. C ,  D >. )
) >. )
41, 2, 3syl2an 284 . 2  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. )
)  ->  ( <. A ,  B >.  .pQ  <. C ,  D >. )  =  <. ( ( 1st `  <. A ,  B >. )  .N  ( 1st `  <. C ,  D >. )
) ,  ( ( 2nd `  <. A ,  B >. )  .N  ( 2nd `  <. C ,  D >. ) ) >. )
5 op1stg 5935 . . . 4  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( 1st `  <. A ,  B >. )  =  A )
6 op1stg 5935 . . . 4  |-  ( ( C  e.  N.  /\  D  e.  N. )  ->  ( 1st `  <. C ,  D >. )  =  C )
75, 6oveqan12d 5685 . . 3  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. )
)  ->  ( ( 1st `  <. A ,  B >. )  .N  ( 1st `  <. C ,  D >. ) )  =  ( A  .N  C ) )
8 op2ndg 5936 . . . 4  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( 2nd `  <. A ,  B >. )  =  B )
9 op2ndg 5936 . . . 4  |-  ( ( C  e.  N.  /\  D  e.  N. )  ->  ( 2nd `  <. C ,  D >. )  =  D )
108, 9oveqan12d 5685 . . 3  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. )
)  ->  ( ( 2nd `  <. A ,  B >. )  .N  ( 2nd `  <. C ,  D >. ) )  =  ( B  .N  D ) )
117, 10opeq12d 3636 . 2  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. )
)  ->  <. ( ( 1st `  <. A ,  B >. )  .N  ( 1st `  <. C ,  D >. ) ) ,  ( ( 2nd `  <. A ,  B >. )  .N  ( 2nd `  <. C ,  D >. )
) >.  =  <. ( A  .N  C ) ,  ( B  .N  D
) >. )
124, 11eqtrd 2121 1  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. )
)  ->  ( <. A ,  B >.  .pQ  <. C ,  D >. )  =  <. ( A  .N  C ) ,  ( B  .N  D ) >. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1290    e. wcel 1439   <.cop 3453    X. cxp 4450   ` cfv 5028  (class class class)co 5666   1stc1st 5923   2ndc2nd 5924   N.cnpi 6892    .N cmi 6894    .pQ cmpq 6897
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-coll 3960  ax-sep 3963  ax-nul 3971  ax-pow 4015  ax-pr 4045  ax-un 4269  ax-setind 4366  ax-iinf 4416
This theorem depends on definitions:  df-bi 116  df-dc 782  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-ral 2365  df-rex 2366  df-reu 2367  df-rab 2369  df-v 2622  df-sbc 2842  df-csb 2935  df-dif 3002  df-un 3004  df-in 3006  df-ss 3013  df-nul 3288  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-int 3695  df-iun 3738  df-br 3852  df-opab 3906  df-mpt 3907  df-tr 3943  df-id 4129  df-iord 4202  df-on 4204  df-suc 4207  df-iom 4419  df-xp 4458  df-rel 4459  df-cnv 4460  df-co 4461  df-dm 4462  df-rn 4463  df-res 4464  df-ima 4465  df-iota 4993  df-fun 5030  df-fn 5031  df-f 5032  df-f1 5033  df-fo 5034  df-f1o 5035  df-fv 5036  df-ov 5669  df-oprab 5670  df-mpt2 5671  df-1st 5925  df-2nd 5926  df-recs 6084  df-irdg 6149  df-oadd 6199  df-omul 6200  df-ni 6924  df-mi 6926  df-mpq 6965
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator