ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulpipq Unicode version

Theorem mulpipq 7467
Description: Multiplication of positive fractions in terms of positive integers. (Contributed by NM, 28-Aug-1995.) (Revised by Mario Carneiro, 8-May-2013.)
Assertion
Ref Expression
mulpipq  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. )
)  ->  ( <. A ,  B >.  .pQ  <. C ,  D >. )  =  <. ( A  .N  C ) ,  ( B  .N  D ) >. )

Proof of Theorem mulpipq
StepHypRef Expression
1 opelxpi 4705 . . 3  |-  ( ( A  e.  N.  /\  B  e.  N. )  -> 
<. A ,  B >.  e.  ( N.  X.  N. ) )
2 opelxpi 4705 . . 3  |-  ( ( C  e.  N.  /\  D  e.  N. )  -> 
<. C ,  D >.  e.  ( N.  X.  N. ) )
3 mulpipq2 7466 . . 3  |-  ( (
<. A ,  B >.  e.  ( N.  X.  N. )  /\  <. C ,  D >.  e.  ( N.  X.  N. ) )  ->  ( <. A ,  B >.  .pQ 
<. C ,  D >. )  =  <. ( ( 1st `  <. A ,  B >. )  .N  ( 1st `  <. C ,  D >. ) ) ,  ( ( 2nd `  <. A ,  B >. )  .N  ( 2nd `  <. C ,  D >. )
) >. )
41, 2, 3syl2an 289 . 2  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. )
)  ->  ( <. A ,  B >.  .pQ  <. C ,  D >. )  =  <. ( ( 1st `  <. A ,  B >. )  .N  ( 1st `  <. C ,  D >. )
) ,  ( ( 2nd `  <. A ,  B >. )  .N  ( 2nd `  <. C ,  D >. ) ) >. )
5 op1stg 6226 . . . 4  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( 1st `  <. A ,  B >. )  =  A )
6 op1stg 6226 . . . 4  |-  ( ( C  e.  N.  /\  D  e.  N. )  ->  ( 1st `  <. C ,  D >. )  =  C )
75, 6oveqan12d 5953 . . 3  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. )
)  ->  ( ( 1st `  <. A ,  B >. )  .N  ( 1st `  <. C ,  D >. ) )  =  ( A  .N  C ) )
8 op2ndg 6227 . . . 4  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( 2nd `  <. A ,  B >. )  =  B )
9 op2ndg 6227 . . . 4  |-  ( ( C  e.  N.  /\  D  e.  N. )  ->  ( 2nd `  <. C ,  D >. )  =  D )
108, 9oveqan12d 5953 . . 3  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. )
)  ->  ( ( 2nd `  <. A ,  B >. )  .N  ( 2nd `  <. C ,  D >. ) )  =  ( B  .N  D ) )
117, 10opeq12d 3826 . 2  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. )
)  ->  <. ( ( 1st `  <. A ,  B >. )  .N  ( 1st `  <. C ,  D >. ) ) ,  ( ( 2nd `  <. A ,  B >. )  .N  ( 2nd `  <. C ,  D >. )
) >.  =  <. ( A  .N  C ) ,  ( B  .N  D
) >. )
124, 11eqtrd 2237 1  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. )
)  ->  ( <. A ,  B >.  .pQ  <. C ,  D >. )  =  <. ( A  .N  C ) ,  ( B  .N  D ) >. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1372    e. wcel 2175   <.cop 3635    X. cxp 4671   ` cfv 5268  (class class class)co 5934   1stc1st 6214   2ndc2nd 6215   N.cnpi 7367    .N cmi 7369    .pQ cmpq 7372
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-iinf 4634
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4338  df-iord 4411  df-on 4413  df-suc 4416  df-iom 4637  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-ov 5937  df-oprab 5938  df-mpo 5939  df-1st 6216  df-2nd 6217  df-recs 6381  df-irdg 6446  df-oadd 6496  df-omul 6497  df-ni 7399  df-mi 7401  df-mpq 7440
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator