ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulpipq Unicode version

Theorem mulpipq 7313
Description: Multiplication of positive fractions in terms of positive integers. (Contributed by NM, 28-Aug-1995.) (Revised by Mario Carneiro, 8-May-2013.)
Assertion
Ref Expression
mulpipq  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. )
)  ->  ( <. A ,  B >.  .pQ  <. C ,  D >. )  =  <. ( A  .N  C ) ,  ( B  .N  D ) >. )

Proof of Theorem mulpipq
StepHypRef Expression
1 opelxpi 4636 . . 3  |-  ( ( A  e.  N.  /\  B  e.  N. )  -> 
<. A ,  B >.  e.  ( N.  X.  N. ) )
2 opelxpi 4636 . . 3  |-  ( ( C  e.  N.  /\  D  e.  N. )  -> 
<. C ,  D >.  e.  ( N.  X.  N. ) )
3 mulpipq2 7312 . . 3  |-  ( (
<. A ,  B >.  e.  ( N.  X.  N. )  /\  <. C ,  D >.  e.  ( N.  X.  N. ) )  ->  ( <. A ,  B >.  .pQ 
<. C ,  D >. )  =  <. ( ( 1st `  <. A ,  B >. )  .N  ( 1st `  <. C ,  D >. ) ) ,  ( ( 2nd `  <. A ,  B >. )  .N  ( 2nd `  <. C ,  D >. )
) >. )
41, 2, 3syl2an 287 . 2  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. )
)  ->  ( <. A ,  B >.  .pQ  <. C ,  D >. )  =  <. ( ( 1st `  <. A ,  B >. )  .N  ( 1st `  <. C ,  D >. )
) ,  ( ( 2nd `  <. A ,  B >. )  .N  ( 2nd `  <. C ,  D >. ) ) >. )
5 op1stg 6118 . . . 4  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( 1st `  <. A ,  B >. )  =  A )
6 op1stg 6118 . . . 4  |-  ( ( C  e.  N.  /\  D  e.  N. )  ->  ( 1st `  <. C ,  D >. )  =  C )
75, 6oveqan12d 5861 . . 3  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. )
)  ->  ( ( 1st `  <. A ,  B >. )  .N  ( 1st `  <. C ,  D >. ) )  =  ( A  .N  C ) )
8 op2ndg 6119 . . . 4  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( 2nd `  <. A ,  B >. )  =  B )
9 op2ndg 6119 . . . 4  |-  ( ( C  e.  N.  /\  D  e.  N. )  ->  ( 2nd `  <. C ,  D >. )  =  D )
108, 9oveqan12d 5861 . . 3  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. )
)  ->  ( ( 2nd `  <. A ,  B >. )  .N  ( 2nd `  <. C ,  D >. ) )  =  ( B  .N  D ) )
117, 10opeq12d 3766 . 2  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. )
)  ->  <. ( ( 1st `  <. A ,  B >. )  .N  ( 1st `  <. C ,  D >. ) ) ,  ( ( 2nd `  <. A ,  B >. )  .N  ( 2nd `  <. C ,  D >. )
) >.  =  <. ( A  .N  C ) ,  ( B  .N  D
) >. )
124, 11eqtrd 2198 1  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. )
)  ->  ( <. A ,  B >.  .pQ  <. C ,  D >. )  =  <. ( A  .N  C ) ,  ( B  .N  D ) >. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136   <.cop 3579    X. cxp 4602   ` cfv 5188  (class class class)co 5842   1stc1st 6106   2ndc2nd 6107   N.cnpi 7213    .N cmi 7215    .pQ cmpq 7218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-oadd 6388  df-omul 6389  df-ni 7245  df-mi 7247  df-mpq 7286
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator