ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulpipq Unicode version

Theorem mulpipq 7173
Description: Multiplication of positive fractions in terms of positive integers. (Contributed by NM, 28-Aug-1995.) (Revised by Mario Carneiro, 8-May-2013.)
Assertion
Ref Expression
mulpipq  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. )
)  ->  ( <. A ,  B >.  .pQ  <. C ,  D >. )  =  <. ( A  .N  C ) ,  ( B  .N  D ) >. )

Proof of Theorem mulpipq
StepHypRef Expression
1 opelxpi 4566 . . 3  |-  ( ( A  e.  N.  /\  B  e.  N. )  -> 
<. A ,  B >.  e.  ( N.  X.  N. ) )
2 opelxpi 4566 . . 3  |-  ( ( C  e.  N.  /\  D  e.  N. )  -> 
<. C ,  D >.  e.  ( N.  X.  N. ) )
3 mulpipq2 7172 . . 3  |-  ( (
<. A ,  B >.  e.  ( N.  X.  N. )  /\  <. C ,  D >.  e.  ( N.  X.  N. ) )  ->  ( <. A ,  B >.  .pQ 
<. C ,  D >. )  =  <. ( ( 1st `  <. A ,  B >. )  .N  ( 1st `  <. C ,  D >. ) ) ,  ( ( 2nd `  <. A ,  B >. )  .N  ( 2nd `  <. C ,  D >. )
) >. )
41, 2, 3syl2an 287 . 2  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. )
)  ->  ( <. A ,  B >.  .pQ  <. C ,  D >. )  =  <. ( ( 1st `  <. A ,  B >. )  .N  ( 1st `  <. C ,  D >. )
) ,  ( ( 2nd `  <. A ,  B >. )  .N  ( 2nd `  <. C ,  D >. ) ) >. )
5 op1stg 6041 . . . 4  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( 1st `  <. A ,  B >. )  =  A )
6 op1stg 6041 . . . 4  |-  ( ( C  e.  N.  /\  D  e.  N. )  ->  ( 1st `  <. C ,  D >. )  =  C )
75, 6oveqan12d 5786 . . 3  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. )
)  ->  ( ( 1st `  <. A ,  B >. )  .N  ( 1st `  <. C ,  D >. ) )  =  ( A  .N  C ) )
8 op2ndg 6042 . . . 4  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( 2nd `  <. A ,  B >. )  =  B )
9 op2ndg 6042 . . . 4  |-  ( ( C  e.  N.  /\  D  e.  N. )  ->  ( 2nd `  <. C ,  D >. )  =  D )
108, 9oveqan12d 5786 . . 3  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. )
)  ->  ( ( 2nd `  <. A ,  B >. )  .N  ( 2nd `  <. C ,  D >. ) )  =  ( B  .N  D ) )
117, 10opeq12d 3708 . 2  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. )
)  ->  <. ( ( 1st `  <. A ,  B >. )  .N  ( 1st `  <. C ,  D >. ) ) ,  ( ( 2nd `  <. A ,  B >. )  .N  ( 2nd `  <. C ,  D >. )
) >.  =  <. ( A  .N  C ) ,  ( B  .N  D
) >. )
124, 11eqtrd 2170 1  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. )
)  ->  ( <. A ,  B >.  .pQ  <. C ,  D >. )  =  <. ( A  .N  C ) ,  ( B  .N  D ) >. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480   <.cop 3525    X. cxp 4532   ` cfv 5118  (class class class)co 5767   1stc1st 6029   2ndc2nd 6030   N.cnpi 7073    .N cmi 7075    .pQ cmpq 7078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-iord 4283  df-on 4285  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-irdg 6260  df-oadd 6310  df-omul 6311  df-ni 7105  df-mi 7107  df-mpq 7146
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator