![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mulpipq | GIF version |
Description: Multiplication of positive fractions in terms of positive integers. (Contributed by NM, 28-Aug-1995.) (Revised by Mario Carneiro, 8-May-2013.) |
Ref | Expression |
---|---|
mulpipq | ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ (𝐶 ∈ N ∧ 𝐷 ∈ N)) → (〈𝐴, 𝐵〉 ·pQ 〈𝐶, 𝐷〉) = 〈(𝐴 ·N 𝐶), (𝐵 ·N 𝐷)〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxpi 4691 | . . 3 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → 〈𝐴, 𝐵〉 ∈ (N × N)) | |
2 | opelxpi 4691 | . . 3 ⊢ ((𝐶 ∈ N ∧ 𝐷 ∈ N) → 〈𝐶, 𝐷〉 ∈ (N × N)) | |
3 | mulpipq2 7431 | . . 3 ⊢ ((〈𝐴, 𝐵〉 ∈ (N × N) ∧ 〈𝐶, 𝐷〉 ∈ (N × N)) → (〈𝐴, 𝐵〉 ·pQ 〈𝐶, 𝐷〉) = 〈((1st ‘〈𝐴, 𝐵〉) ·N (1st ‘〈𝐶, 𝐷〉)), ((2nd ‘〈𝐴, 𝐵〉) ·N (2nd ‘〈𝐶, 𝐷〉))〉) | |
4 | 1, 2, 3 | syl2an 289 | . 2 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ (𝐶 ∈ N ∧ 𝐷 ∈ N)) → (〈𝐴, 𝐵〉 ·pQ 〈𝐶, 𝐷〉) = 〈((1st ‘〈𝐴, 𝐵〉) ·N (1st ‘〈𝐶, 𝐷〉)), ((2nd ‘〈𝐴, 𝐵〉) ·N (2nd ‘〈𝐶, 𝐷〉))〉) |
5 | op1stg 6203 | . . . 4 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (1st ‘〈𝐴, 𝐵〉) = 𝐴) | |
6 | op1stg 6203 | . . . 4 ⊢ ((𝐶 ∈ N ∧ 𝐷 ∈ N) → (1st ‘〈𝐶, 𝐷〉) = 𝐶) | |
7 | 5, 6 | oveqan12d 5937 | . . 3 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ (𝐶 ∈ N ∧ 𝐷 ∈ N)) → ((1st ‘〈𝐴, 𝐵〉) ·N (1st ‘〈𝐶, 𝐷〉)) = (𝐴 ·N 𝐶)) |
8 | op2ndg 6204 | . . . 4 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (2nd ‘〈𝐴, 𝐵〉) = 𝐵) | |
9 | op2ndg 6204 | . . . 4 ⊢ ((𝐶 ∈ N ∧ 𝐷 ∈ N) → (2nd ‘〈𝐶, 𝐷〉) = 𝐷) | |
10 | 8, 9 | oveqan12d 5937 | . . 3 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ (𝐶 ∈ N ∧ 𝐷 ∈ N)) → ((2nd ‘〈𝐴, 𝐵〉) ·N (2nd ‘〈𝐶, 𝐷〉)) = (𝐵 ·N 𝐷)) |
11 | 7, 10 | opeq12d 3812 | . 2 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ (𝐶 ∈ N ∧ 𝐷 ∈ N)) → 〈((1st ‘〈𝐴, 𝐵〉) ·N (1st ‘〈𝐶, 𝐷〉)), ((2nd ‘〈𝐴, 𝐵〉) ·N (2nd ‘〈𝐶, 𝐷〉))〉 = 〈(𝐴 ·N 𝐶), (𝐵 ·N 𝐷)〉) |
12 | 4, 11 | eqtrd 2226 | 1 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ (𝐶 ∈ N ∧ 𝐷 ∈ N)) → (〈𝐴, 𝐵〉 ·pQ 〈𝐶, 𝐷〉) = 〈(𝐴 ·N 𝐶), (𝐵 ·N 𝐷)〉) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 〈cop 3621 × cxp 4657 ‘cfv 5254 (class class class)co 5918 1st c1st 6191 2nd c2nd 6192 Ncnpi 7332 ·N cmi 7334 ·pQ cmpq 7337 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-iinf 4620 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-id 4324 df-iord 4397 df-on 4399 df-suc 4402 df-iom 4623 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-ov 5921 df-oprab 5922 df-mpo 5923 df-1st 6193 df-2nd 6194 df-recs 6358 df-irdg 6423 df-oadd 6473 df-omul 6474 df-ni 7364 df-mi 7366 df-mpq 7405 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |