ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulpipq GIF version

Theorem mulpipq 7439
Description: Multiplication of positive fractions in terms of positive integers. (Contributed by NM, 28-Aug-1995.) (Revised by Mario Carneiro, 8-May-2013.)
Assertion
Ref Expression
mulpipq (((𝐴N𝐵N) ∧ (𝐶N𝐷N)) → (⟨𝐴, 𝐵⟩ ·pQ𝐶, 𝐷⟩) = ⟨(𝐴 ·N 𝐶), (𝐵 ·N 𝐷)⟩)

Proof of Theorem mulpipq
StepHypRef Expression
1 opelxpi 4695 . . 3 ((𝐴N𝐵N) → ⟨𝐴, 𝐵⟩ ∈ (N × N))
2 opelxpi 4695 . . 3 ((𝐶N𝐷N) → ⟨𝐶, 𝐷⟩ ∈ (N × N))
3 mulpipq2 7438 . . 3 ((⟨𝐴, 𝐵⟩ ∈ (N × N) ∧ ⟨𝐶, 𝐷⟩ ∈ (N × N)) → (⟨𝐴, 𝐵⟩ ·pQ𝐶, 𝐷⟩) = ⟨((1st ‘⟨𝐴, 𝐵⟩) ·N (1st ‘⟨𝐶, 𝐷⟩)), ((2nd ‘⟨𝐴, 𝐵⟩) ·N (2nd ‘⟨𝐶, 𝐷⟩))⟩)
41, 2, 3syl2an 289 . 2 (((𝐴N𝐵N) ∧ (𝐶N𝐷N)) → (⟨𝐴, 𝐵⟩ ·pQ𝐶, 𝐷⟩) = ⟨((1st ‘⟨𝐴, 𝐵⟩) ·N (1st ‘⟨𝐶, 𝐷⟩)), ((2nd ‘⟨𝐴, 𝐵⟩) ·N (2nd ‘⟨𝐶, 𝐷⟩))⟩)
5 op1stg 6208 . . . 4 ((𝐴N𝐵N) → (1st ‘⟨𝐴, 𝐵⟩) = 𝐴)
6 op1stg 6208 . . . 4 ((𝐶N𝐷N) → (1st ‘⟨𝐶, 𝐷⟩) = 𝐶)
75, 6oveqan12d 5941 . . 3 (((𝐴N𝐵N) ∧ (𝐶N𝐷N)) → ((1st ‘⟨𝐴, 𝐵⟩) ·N (1st ‘⟨𝐶, 𝐷⟩)) = (𝐴 ·N 𝐶))
8 op2ndg 6209 . . . 4 ((𝐴N𝐵N) → (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵)
9 op2ndg 6209 . . . 4 ((𝐶N𝐷N) → (2nd ‘⟨𝐶, 𝐷⟩) = 𝐷)
108, 9oveqan12d 5941 . . 3 (((𝐴N𝐵N) ∧ (𝐶N𝐷N)) → ((2nd ‘⟨𝐴, 𝐵⟩) ·N (2nd ‘⟨𝐶, 𝐷⟩)) = (𝐵 ·N 𝐷))
117, 10opeq12d 3816 . 2 (((𝐴N𝐵N) ∧ (𝐶N𝐷N)) → ⟨((1st ‘⟨𝐴, 𝐵⟩) ·N (1st ‘⟨𝐶, 𝐷⟩)), ((2nd ‘⟨𝐴, 𝐵⟩) ·N (2nd ‘⟨𝐶, 𝐷⟩))⟩ = ⟨(𝐴 ·N 𝐶), (𝐵 ·N 𝐷)⟩)
124, 11eqtrd 2229 1 (((𝐴N𝐵N) ∧ (𝐶N𝐷N)) → (⟨𝐴, 𝐵⟩ ·pQ𝐶, 𝐷⟩) = ⟨(𝐴 ·N 𝐶), (𝐵 ·N 𝐷)⟩)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  cop 3625   × cxp 4661  cfv 5258  (class class class)co 5922  1st c1st 6196  2nd c2nd 6197  Ncnpi 7339   ·N cmi 7341   ·pQ cmpq 7344
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-oadd 6478  df-omul 6479  df-ni 7371  df-mi 7373  df-mpq 7412
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator