ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bezoutlemzz Unicode version

Theorem bezoutlemzz 12438
Description: Lemma for Bézout's identity. Like bezoutlemex 12437 but where ' z ' is any integer, not just a nonnegative one. (Contributed by Mario Carneiro and Jim Kingdon, 8-Jan-2022.)
Assertion
Ref Expression
bezoutlemzz  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  ->  E. d  e.  NN0  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) )
Distinct variable groups:    A, d, x, y    B, d, x, y   
z, A, d    z, B

Proof of Theorem bezoutlemzz
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 bezoutlemex 12437 . 2  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  ->  E. d  e.  NN0  ( A. z  e.  NN0  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) )
2 nfv 1552 . . . . . . 7  |-  F/ z ( ( A  e. 
NN0  /\  B  e.  NN0 )  /\  d  e. 
NN0 )
3 nfra1 2539 . . . . . . 7  |-  F/ z A. z  e.  NN0  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )
42, 3nfan 1589 . . . . . 6  |-  F/ z ( ( ( A  e.  NN0  /\  B  e. 
NN0 )  /\  d  e.  NN0 )  /\  A. z  e.  NN0  ( z 
||  d  ->  (
z  ||  A  /\  z  ||  B ) ) )
5 simpr 110 . . . . . . . . . 10  |-  ( ( ( A. z  e. 
NN0  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B
) )  /\  z  e.  ZZ )  /\  z  e.  NN0 )  ->  z  e.  NN0 )
6 rsp 2555 . . . . . . . . . . 11  |-  ( A. z  e.  NN0  ( z 
||  d  ->  (
z  ||  A  /\  z  ||  B ) )  ->  ( z  e. 
NN0  ->  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B
) ) ) )
76ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( A. z  e. 
NN0  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B
) )  /\  z  e.  ZZ )  /\  z  e.  NN0 )  ->  (
z  e.  NN0  ->  ( z  ||  d  -> 
( z  ||  A  /\  z  ||  B ) ) ) )
85, 7mpd 13 . . . . . . . . 9  |-  ( ( ( A. z  e. 
NN0  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B
) )  /\  z  e.  ZZ )  /\  z  e.  NN0 )  ->  (
z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) ) )
98adantlll 480 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  NN0  /\  B  e.  NN0 )  /\  d  e.  NN0 )  /\  A. z  e.  NN0  (
z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) ) )  /\  z  e.  ZZ )  /\  z  e.  NN0 )  ->  (
z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) ) )
10 breq1 4062 . . . . . . . . . . . 12  |-  ( w  =  -u z  ->  (
w  ||  d  <->  -u z  ||  d ) )
11 breq1 4062 . . . . . . . . . . . . 13  |-  ( w  =  -u z  ->  (
w  ||  A  <->  -u z  ||  A ) )
12 breq1 4062 . . . . . . . . . . . . 13  |-  ( w  =  -u z  ->  (
w  ||  B  <->  -u z  ||  B ) )
1311, 12anbi12d 473 . . . . . . . . . . . 12  |-  ( w  =  -u z  ->  (
( w  ||  A  /\  w  ||  B )  <-> 
( -u z  ||  A  /\  -u z  ||  B
) ) )
1410, 13imbi12d 234 . . . . . . . . . . 11  |-  ( w  =  -u z  ->  (
( w  ||  d  ->  ( w  ||  A  /\  w  ||  B ) )  <->  ( -u z  ||  d  ->  ( -u z  ||  A  /\  -u z  ||  B ) ) ) )
15 breq1 4062 . . . . . . . . . . . . . . 15  |-  ( z  =  w  ->  (
z  ||  d  <->  w  ||  d
) )
16 breq1 4062 . . . . . . . . . . . . . . . 16  |-  ( z  =  w  ->  (
z  ||  A  <->  w  ||  A
) )
17 breq1 4062 . . . . . . . . . . . . . . . 16  |-  ( z  =  w  ->  (
z  ||  B  <->  w  ||  B
) )
1816, 17anbi12d 473 . . . . . . . . . . . . . . 15  |-  ( z  =  w  ->  (
( z  ||  A  /\  z  ||  B )  <-> 
( w  ||  A  /\  w  ||  B ) ) )
1915, 18imbi12d 234 . . . . . . . . . . . . . 14  |-  ( z  =  w  ->  (
( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )  <->  ( w  ||  d  ->  ( w  ||  A  /\  w  ||  B
) ) ) )
2019cbvralv 2742 . . . . . . . . . . . . 13  |-  ( A. z  e.  NN0  ( z 
||  d  ->  (
z  ||  A  /\  z  ||  B ) )  <->  A. w  e.  NN0  ( w  ||  d  -> 
( w  ||  A  /\  w  ||  B ) ) )
2120biimpi 120 . . . . . . . . . . . 12  |-  ( A. z  e.  NN0  ( z 
||  d  ->  (
z  ||  A  /\  z  ||  B ) )  ->  A. w  e.  NN0  ( w  ||  d  -> 
( w  ||  A  /\  w  ||  B ) ) )
2221ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( A. z  e. 
NN0  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B
) )  /\  z  e.  ZZ )  /\  -u z  e.  NN0 )  ->  A. w  e.  NN0  ( w  ||  d  ->  ( w  ||  A  /\  w  ||  B
) ) )
23 simpr 110 . . . . . . . . . . 11  |-  ( ( ( A. z  e. 
NN0  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B
) )  /\  z  e.  ZZ )  /\  -u z  e.  NN0 )  ->  -u z  e.  NN0 )
2414, 22, 23rspcdva 2889 . . . . . . . . . 10  |-  ( ( ( A. z  e. 
NN0  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B
) )  /\  z  e.  ZZ )  /\  -u z  e.  NN0 )  ->  ( -u z  ||  d  -> 
( -u z  ||  A  /\  -u z  ||  B
) ) )
2524adantlll 480 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  NN0  /\  B  e.  NN0 )  /\  d  e.  NN0 )  /\  A. z  e.  NN0  (
z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) ) )  /\  z  e.  ZZ )  /\  -u z  e.  NN0 )  ->  ( -u z  ||  d  -> 
( -u z  ||  A  /\  -u z  ||  B
) ) )
26 simplr 528 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  NN0  /\  B  e.  NN0 )  /\  d  e.  NN0 )  /\  A. z  e.  NN0  (
z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) ) )  /\  z  e.  ZZ )  /\  -u z  e.  NN0 )  ->  z  e.  ZZ )
27 simpllr 534 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  NN0  /\  B  e. 
NN0 )  /\  d  e.  NN0 )  /\  A. z  e.  NN0  ( z 
||  d  ->  (
z  ||  A  /\  z  ||  B ) ) )  /\  z  e.  ZZ )  ->  d  e.  NN0 )
2827adantr 276 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  NN0  /\  B  e.  NN0 )  /\  d  e.  NN0 )  /\  A. z  e.  NN0  (
z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) ) )  /\  z  e.  ZZ )  /\  -u z  e.  NN0 )  ->  d  e.  NN0 )
2928nn0zd 9528 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  NN0  /\  B  e.  NN0 )  /\  d  e.  NN0 )  /\  A. z  e.  NN0  (
z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) ) )  /\  z  e.  ZZ )  /\  -u z  e.  NN0 )  ->  d  e.  ZZ )
30 negdvdsb 12233 . . . . . . . . . 10  |-  ( ( z  e.  ZZ  /\  d  e.  ZZ )  ->  ( z  ||  d  <->  -u z  ||  d ) )
3126, 29, 30syl2anc 411 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  NN0  /\  B  e.  NN0 )  /\  d  e.  NN0 )  /\  A. z  e.  NN0  (
z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) ) )  /\  z  e.  ZZ )  /\  -u z  e.  NN0 )  ->  (
z  ||  d  <->  -u z  ||  d ) )
32 simplll 533 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. 
NN0  /\  B  e.  NN0 )  /\  d  e. 
NN0 )  /\  A. z  e.  NN0  ( z 
||  d  ->  (
z  ||  A  /\  z  ||  B ) ) )  ->  A  e.  NN0 )
3332ad2antrr 488 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  NN0  /\  B  e.  NN0 )  /\  d  e.  NN0 )  /\  A. z  e.  NN0  (
z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) ) )  /\  z  e.  ZZ )  /\  -u z  e.  NN0 )  ->  A  e.  NN0 )
3433nn0zd 9528 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  NN0  /\  B  e.  NN0 )  /\  d  e.  NN0 )  /\  A. z  e.  NN0  (
z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) ) )  /\  z  e.  ZZ )  /\  -u z  e.  NN0 )  ->  A  e.  ZZ )
35 negdvdsb 12233 . . . . . . . . . . 11  |-  ( ( z  e.  ZZ  /\  A  e.  ZZ )  ->  ( z  ||  A  <->  -u z  ||  A ) )
3626, 34, 35syl2anc 411 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  NN0  /\  B  e.  NN0 )  /\  d  e.  NN0 )  /\  A. z  e.  NN0  (
z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) ) )  /\  z  e.  ZZ )  /\  -u z  e.  NN0 )  ->  (
z  ||  A  <->  -u z  ||  A ) )
37 simpllr 534 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. 
NN0  /\  B  e.  NN0 )  /\  d  e. 
NN0 )  /\  A. z  e.  NN0  ( z 
||  d  ->  (
z  ||  A  /\  z  ||  B ) ) )  ->  B  e.  NN0 )
3837ad2antrr 488 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  NN0  /\  B  e.  NN0 )  /\  d  e.  NN0 )  /\  A. z  e.  NN0  (
z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) ) )  /\  z  e.  ZZ )  /\  -u z  e.  NN0 )  ->  B  e.  NN0 )
3938nn0zd 9528 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  NN0  /\  B  e.  NN0 )  /\  d  e.  NN0 )  /\  A. z  e.  NN0  (
z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) ) )  /\  z  e.  ZZ )  /\  -u z  e.  NN0 )  ->  B  e.  ZZ )
40 negdvdsb 12233 . . . . . . . . . . 11  |-  ( ( z  e.  ZZ  /\  B  e.  ZZ )  ->  ( z  ||  B  <->  -u z  ||  B ) )
4126, 39, 40syl2anc 411 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  NN0  /\  B  e.  NN0 )  /\  d  e.  NN0 )  /\  A. z  e.  NN0  (
z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) ) )  /\  z  e.  ZZ )  /\  -u z  e.  NN0 )  ->  (
z  ||  B  <->  -u z  ||  B ) )
4236, 41anbi12d 473 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  NN0  /\  B  e.  NN0 )  /\  d  e.  NN0 )  /\  A. z  e.  NN0  (
z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) ) )  /\  z  e.  ZZ )  /\  -u z  e.  NN0 )  ->  (
( z  ||  A  /\  z  ||  B )  <-> 
( -u z  ||  A  /\  -u z  ||  B
) ) )
4325, 31, 423imtr4d 203 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  NN0  /\  B  e.  NN0 )  /\  d  e.  NN0 )  /\  A. z  e.  NN0  (
z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) ) )  /\  z  e.  ZZ )  /\  -u z  e.  NN0 )  ->  (
z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) ) )
44 elznn0 9422 . . . . . . . . . 10  |-  ( z  e.  ZZ  <->  ( z  e.  RR  /\  ( z  e.  NN0  \/  -u z  e.  NN0 ) ) )
4544simprbi 275 . . . . . . . . 9  |-  ( z  e.  ZZ  ->  (
z  e.  NN0  \/  -u z  e.  NN0 )
)
4645adantl 277 . . . . . . . 8  |-  ( ( ( ( ( A  e.  NN0  /\  B  e. 
NN0 )  /\  d  e.  NN0 )  /\  A. z  e.  NN0  ( z 
||  d  ->  (
z  ||  A  /\  z  ||  B ) ) )  /\  z  e.  ZZ )  ->  (
z  e.  NN0  \/  -u z  e.  NN0 )
)
479, 43, 46mpjaodan 800 . . . . . . 7  |-  ( ( ( ( ( A  e.  NN0  /\  B  e. 
NN0 )  /\  d  e.  NN0 )  /\  A. z  e.  NN0  ( z 
||  d  ->  (
z  ||  A  /\  z  ||  B ) ) )  /\  z  e.  ZZ )  ->  (
z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) ) )
4847ex 115 . . . . . 6  |-  ( ( ( ( A  e. 
NN0  /\  B  e.  NN0 )  /\  d  e. 
NN0 )  /\  A. z  e.  NN0  ( z 
||  d  ->  (
z  ||  A  /\  z  ||  B ) ) )  ->  ( z  e.  ZZ  ->  ( z  ||  d  ->  ( z 
||  A  /\  z  ||  B ) ) ) )
494, 48ralrimi 2579 . . . . 5  |-  ( ( ( ( A  e. 
NN0  /\  B  e.  NN0 )  /\  d  e. 
NN0 )  /\  A. z  e.  NN0  ( z 
||  d  ->  (
z  ||  A  /\  z  ||  B ) ) )  ->  A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B
) ) )
5049ex 115 . . . 4  |-  ( ( ( A  e.  NN0  /\  B  e.  NN0 )  /\  d  e.  NN0 )  ->  ( A. z  e.  NN0  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B
) )  ->  A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B
) ) ) )
5150anim1d 336 . . 3  |-  ( ( ( A  e.  NN0  /\  B  e.  NN0 )  /\  d  e.  NN0 )  ->  ( ( A. z  e.  NN0  ( z 
||  d  ->  (
z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) )  ->  ( A. z  e.  ZZ  (
z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) ) )
5251reximdva 2610 . 2  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  -> 
( E. d  e. 
NN0  ( A. z  e.  NN0  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B
) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) )  ->  E. d  e.  NN0  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B
) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) ) )
531, 52mpd 13 1  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  ->  E. d  e.  NN0  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710    = wceq 1373    e. wcel 2178   A.wral 2486   E.wrex 2487   class class class wbr 4059  (class class class)co 5967   RRcr 7959    + caddc 7963    x. cmul 7965   -ucneg 8279   NN0cn0 9330   ZZcz 9407    || cdvds 12213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078  ax-arch 8079
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-n0 9331  df-z 9408  df-uz 9684  df-q 9776  df-rp 9811  df-fz 10166  df-fl 10450  df-mod 10505  df-seqfrec 10630  df-exp 10721  df-cj 11268  df-re 11269  df-im 11270  df-rsqrt 11424  df-abs 11425  df-dvds 12214
This theorem is referenced by:  bezoutlemaz  12439
  Copyright terms: Public domain W3C validator