ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bezoutlemzz Unicode version

Theorem bezoutlemzz 11935
Description: Lemma for Bézout's identity. Like bezoutlemex 11934 but where ' z ' is any integer, not just a nonnegative one. (Contributed by Mario Carneiro and Jim Kingdon, 8-Jan-2022.)
Assertion
Ref Expression
bezoutlemzz  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  ->  E. d  e.  NN0  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) )
Distinct variable groups:    A, d, x, y    B, d, x, y   
z, A, d    z, B

Proof of Theorem bezoutlemzz
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 bezoutlemex 11934 . 2  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  ->  E. d  e.  NN0  ( A. z  e.  NN0  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) )
2 nfv 1516 . . . . . . 7  |-  F/ z ( ( A  e. 
NN0  /\  B  e.  NN0 )  /\  d  e. 
NN0 )
3 nfra1 2497 . . . . . . 7  |-  F/ z A. z  e.  NN0  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )
42, 3nfan 1553 . . . . . 6  |-  F/ z ( ( ( A  e.  NN0  /\  B  e. 
NN0 )  /\  d  e.  NN0 )  /\  A. z  e.  NN0  ( z 
||  d  ->  (
z  ||  A  /\  z  ||  B ) ) )
5 simpr 109 . . . . . . . . . 10  |-  ( ( ( A. z  e. 
NN0  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B
) )  /\  z  e.  ZZ )  /\  z  e.  NN0 )  ->  z  e.  NN0 )
6 rsp 2513 . . . . . . . . . . 11  |-  ( A. z  e.  NN0  ( z 
||  d  ->  (
z  ||  A  /\  z  ||  B ) )  ->  ( z  e. 
NN0  ->  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B
) ) ) )
76ad2antrr 480 . . . . . . . . . 10  |-  ( ( ( A. z  e. 
NN0  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B
) )  /\  z  e.  ZZ )  /\  z  e.  NN0 )  ->  (
z  e.  NN0  ->  ( z  ||  d  -> 
( z  ||  A  /\  z  ||  B ) ) ) )
85, 7mpd 13 . . . . . . . . 9  |-  ( ( ( A. z  e. 
NN0  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B
) )  /\  z  e.  ZZ )  /\  z  e.  NN0 )  ->  (
z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) ) )
98adantlll 472 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  NN0  /\  B  e.  NN0 )  /\  d  e.  NN0 )  /\  A. z  e.  NN0  (
z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) ) )  /\  z  e.  ZZ )  /\  z  e.  NN0 )  ->  (
z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) ) )
10 breq1 3985 . . . . . . . . . . . 12  |-  ( w  =  -u z  ->  (
w  ||  d  <->  -u z  ||  d ) )
11 breq1 3985 . . . . . . . . . . . . 13  |-  ( w  =  -u z  ->  (
w  ||  A  <->  -u z  ||  A ) )
12 breq1 3985 . . . . . . . . . . . . 13  |-  ( w  =  -u z  ->  (
w  ||  B  <->  -u z  ||  B ) )
1311, 12anbi12d 465 . . . . . . . . . . . 12  |-  ( w  =  -u z  ->  (
( w  ||  A  /\  w  ||  B )  <-> 
( -u z  ||  A  /\  -u z  ||  B
) ) )
1410, 13imbi12d 233 . . . . . . . . . . 11  |-  ( w  =  -u z  ->  (
( w  ||  d  ->  ( w  ||  A  /\  w  ||  B ) )  <->  ( -u z  ||  d  ->  ( -u z  ||  A  /\  -u z  ||  B ) ) ) )
15 breq1 3985 . . . . . . . . . . . . . . 15  |-  ( z  =  w  ->  (
z  ||  d  <->  w  ||  d
) )
16 breq1 3985 . . . . . . . . . . . . . . . 16  |-  ( z  =  w  ->  (
z  ||  A  <->  w  ||  A
) )
17 breq1 3985 . . . . . . . . . . . . . . . 16  |-  ( z  =  w  ->  (
z  ||  B  <->  w  ||  B
) )
1816, 17anbi12d 465 . . . . . . . . . . . . . . 15  |-  ( z  =  w  ->  (
( z  ||  A  /\  z  ||  B )  <-> 
( w  ||  A  /\  w  ||  B ) ) )
1915, 18imbi12d 233 . . . . . . . . . . . . . 14  |-  ( z  =  w  ->  (
( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )  <->  ( w  ||  d  ->  ( w  ||  A  /\  w  ||  B
) ) ) )
2019cbvralv 2692 . . . . . . . . . . . . 13  |-  ( A. z  e.  NN0  ( z 
||  d  ->  (
z  ||  A  /\  z  ||  B ) )  <->  A. w  e.  NN0  ( w  ||  d  -> 
( w  ||  A  /\  w  ||  B ) ) )
2120biimpi 119 . . . . . . . . . . . 12  |-  ( A. z  e.  NN0  ( z 
||  d  ->  (
z  ||  A  /\  z  ||  B ) )  ->  A. w  e.  NN0  ( w  ||  d  -> 
( w  ||  A  /\  w  ||  B ) ) )
2221ad2antrr 480 . . . . . . . . . . 11  |-  ( ( ( A. z  e. 
NN0  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B
) )  /\  z  e.  ZZ )  /\  -u z  e.  NN0 )  ->  A. w  e.  NN0  ( w  ||  d  ->  ( w  ||  A  /\  w  ||  B
) ) )
23 simpr 109 . . . . . . . . . . 11  |-  ( ( ( A. z  e. 
NN0  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B
) )  /\  z  e.  ZZ )  /\  -u z  e.  NN0 )  ->  -u z  e.  NN0 )
2414, 22, 23rspcdva 2835 . . . . . . . . . 10  |-  ( ( ( A. z  e. 
NN0  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B
) )  /\  z  e.  ZZ )  /\  -u z  e.  NN0 )  ->  ( -u z  ||  d  -> 
( -u z  ||  A  /\  -u z  ||  B
) ) )
2524adantlll 472 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  NN0  /\  B  e.  NN0 )  /\  d  e.  NN0 )  /\  A. z  e.  NN0  (
z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) ) )  /\  z  e.  ZZ )  /\  -u z  e.  NN0 )  ->  ( -u z  ||  d  -> 
( -u z  ||  A  /\  -u z  ||  B
) ) )
26 simplr 520 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  NN0  /\  B  e.  NN0 )  /\  d  e.  NN0 )  /\  A. z  e.  NN0  (
z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) ) )  /\  z  e.  ZZ )  /\  -u z  e.  NN0 )  ->  z  e.  ZZ )
27 simpllr 524 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  NN0  /\  B  e. 
NN0 )  /\  d  e.  NN0 )  /\  A. z  e.  NN0  ( z 
||  d  ->  (
z  ||  A  /\  z  ||  B ) ) )  /\  z  e.  ZZ )  ->  d  e.  NN0 )
2827adantr 274 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  NN0  /\  B  e.  NN0 )  /\  d  e.  NN0 )  /\  A. z  e.  NN0  (
z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) ) )  /\  z  e.  ZZ )  /\  -u z  e.  NN0 )  ->  d  e.  NN0 )
2928nn0zd 9311 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  NN0  /\  B  e.  NN0 )  /\  d  e.  NN0 )  /\  A. z  e.  NN0  (
z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) ) )  /\  z  e.  ZZ )  /\  -u z  e.  NN0 )  ->  d  e.  ZZ )
30 negdvdsb 11747 . . . . . . . . . 10  |-  ( ( z  e.  ZZ  /\  d  e.  ZZ )  ->  ( z  ||  d  <->  -u z  ||  d ) )
3126, 29, 30syl2anc 409 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  NN0  /\  B  e.  NN0 )  /\  d  e.  NN0 )  /\  A. z  e.  NN0  (
z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) ) )  /\  z  e.  ZZ )  /\  -u z  e.  NN0 )  ->  (
z  ||  d  <->  -u z  ||  d ) )
32 simplll 523 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. 
NN0  /\  B  e.  NN0 )  /\  d  e. 
NN0 )  /\  A. z  e.  NN0  ( z 
||  d  ->  (
z  ||  A  /\  z  ||  B ) ) )  ->  A  e.  NN0 )
3332ad2antrr 480 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  NN0  /\  B  e.  NN0 )  /\  d  e.  NN0 )  /\  A. z  e.  NN0  (
z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) ) )  /\  z  e.  ZZ )  /\  -u z  e.  NN0 )  ->  A  e.  NN0 )
3433nn0zd 9311 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  NN0  /\  B  e.  NN0 )  /\  d  e.  NN0 )  /\  A. z  e.  NN0  (
z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) ) )  /\  z  e.  ZZ )  /\  -u z  e.  NN0 )  ->  A  e.  ZZ )
35 negdvdsb 11747 . . . . . . . . . . 11  |-  ( ( z  e.  ZZ  /\  A  e.  ZZ )  ->  ( z  ||  A  <->  -u z  ||  A ) )
3626, 34, 35syl2anc 409 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  NN0  /\  B  e.  NN0 )  /\  d  e.  NN0 )  /\  A. z  e.  NN0  (
z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) ) )  /\  z  e.  ZZ )  /\  -u z  e.  NN0 )  ->  (
z  ||  A  <->  -u z  ||  A ) )
37 simpllr 524 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. 
NN0  /\  B  e.  NN0 )  /\  d  e. 
NN0 )  /\  A. z  e.  NN0  ( z 
||  d  ->  (
z  ||  A  /\  z  ||  B ) ) )  ->  B  e.  NN0 )
3837ad2antrr 480 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  NN0  /\  B  e.  NN0 )  /\  d  e.  NN0 )  /\  A. z  e.  NN0  (
z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) ) )  /\  z  e.  ZZ )  /\  -u z  e.  NN0 )  ->  B  e.  NN0 )
3938nn0zd 9311 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  NN0  /\  B  e.  NN0 )  /\  d  e.  NN0 )  /\  A. z  e.  NN0  (
z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) ) )  /\  z  e.  ZZ )  /\  -u z  e.  NN0 )  ->  B  e.  ZZ )
40 negdvdsb 11747 . . . . . . . . . . 11  |-  ( ( z  e.  ZZ  /\  B  e.  ZZ )  ->  ( z  ||  B  <->  -u z  ||  B ) )
4126, 39, 40syl2anc 409 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  NN0  /\  B  e.  NN0 )  /\  d  e.  NN0 )  /\  A. z  e.  NN0  (
z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) ) )  /\  z  e.  ZZ )  /\  -u z  e.  NN0 )  ->  (
z  ||  B  <->  -u z  ||  B ) )
4236, 41anbi12d 465 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  NN0  /\  B  e.  NN0 )  /\  d  e.  NN0 )  /\  A. z  e.  NN0  (
z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) ) )  /\  z  e.  ZZ )  /\  -u z  e.  NN0 )  ->  (
( z  ||  A  /\  z  ||  B )  <-> 
( -u z  ||  A  /\  -u z  ||  B
) ) )
4325, 31, 423imtr4d 202 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  NN0  /\  B  e.  NN0 )  /\  d  e.  NN0 )  /\  A. z  e.  NN0  (
z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) ) )  /\  z  e.  ZZ )  /\  -u z  e.  NN0 )  ->  (
z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) ) )
44 elznn0 9206 . . . . . . . . . 10  |-  ( z  e.  ZZ  <->  ( z  e.  RR  /\  ( z  e.  NN0  \/  -u z  e.  NN0 ) ) )
4544simprbi 273 . . . . . . . . 9  |-  ( z  e.  ZZ  ->  (
z  e.  NN0  \/  -u z  e.  NN0 )
)
4645adantl 275 . . . . . . . 8  |-  ( ( ( ( ( A  e.  NN0  /\  B  e. 
NN0 )  /\  d  e.  NN0 )  /\  A. z  e.  NN0  ( z 
||  d  ->  (
z  ||  A  /\  z  ||  B ) ) )  /\  z  e.  ZZ )  ->  (
z  e.  NN0  \/  -u z  e.  NN0 )
)
479, 43, 46mpjaodan 788 . . . . . . 7  |-  ( ( ( ( ( A  e.  NN0  /\  B  e. 
NN0 )  /\  d  e.  NN0 )  /\  A. z  e.  NN0  ( z 
||  d  ->  (
z  ||  A  /\  z  ||  B ) ) )  /\  z  e.  ZZ )  ->  (
z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) ) )
4847ex 114 . . . . . 6  |-  ( ( ( ( A  e. 
NN0  /\  B  e.  NN0 )  /\  d  e. 
NN0 )  /\  A. z  e.  NN0  ( z 
||  d  ->  (
z  ||  A  /\  z  ||  B ) ) )  ->  ( z  e.  ZZ  ->  ( z  ||  d  ->  ( z 
||  A  /\  z  ||  B ) ) ) )
494, 48ralrimi 2537 . . . . 5  |-  ( ( ( ( A  e. 
NN0  /\  B  e.  NN0 )  /\  d  e. 
NN0 )  /\  A. z  e.  NN0  ( z 
||  d  ->  (
z  ||  A  /\  z  ||  B ) ) )  ->  A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B
) ) )
5049ex 114 . . . 4  |-  ( ( ( A  e.  NN0  /\  B  e.  NN0 )  /\  d  e.  NN0 )  ->  ( A. z  e.  NN0  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B
) )  ->  A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B
) ) ) )
5150anim1d 334 . . 3  |-  ( ( ( A  e.  NN0  /\  B  e.  NN0 )  /\  d  e.  NN0 )  ->  ( ( A. z  e.  NN0  ( z 
||  d  ->  (
z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) )  ->  ( A. z  e.  ZZ  (
z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) ) )
5251reximdva 2568 . 2  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  -> 
( E. d  e. 
NN0  ( A. z  e.  NN0  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B
) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) )  ->  E. d  e.  NN0  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B
) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) ) )
531, 52mpd 13 1  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  ->  E. d  e.  NN0  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698    = wceq 1343    e. wcel 2136   A.wral 2444   E.wrex 2445   class class class wbr 3982  (class class class)co 5842   RRcr 7752    + caddc 7756    x. cmul 7758   -ucneg 8070   NN0cn0 9114   ZZcz 9191    || cdvds 11727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-fz 9945  df-fl 10205  df-mod 10258  df-seqfrec 10381  df-exp 10455  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-dvds 11728
This theorem is referenced by:  bezoutlemaz  11936
  Copyright terms: Public domain W3C validator