ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0nlt0 Unicode version

Theorem nn0nlt0 9269
Description: A nonnegative integer is not less than zero. (Contributed by NM, 9-May-2004.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
nn0nlt0  |-  ( A  e.  NN0  ->  -.  A  <  0 )

Proof of Theorem nn0nlt0
StepHypRef Expression
1 nn0ge0 9268 . 2  |-  ( A  e.  NN0  ->  0  <_  A )
2 0re 8021 . . 3  |-  0  e.  RR
3 nn0re 9252 . . 3  |-  ( A  e.  NN0  ->  A  e.  RR )
4 lenlt 8097 . . 3  |-  ( ( 0  e.  RR  /\  A  e.  RR )  ->  ( 0  <_  A  <->  -.  A  <  0 ) )
52, 3, 4sylancr 414 . 2  |-  ( A  e.  NN0  ->  ( 0  <_  A  <->  -.  A  <  0 ) )
61, 5mpbid 147 1  |-  ( A  e.  NN0  ->  -.  A  <  0 )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 105    e. wcel 2164   class class class wbr 4030   RRcr 7873   0cc0 7874    < clt 8056    <_ cle 8057   NN0cn0 9243
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-xp 4666  df-cnv 4668  df-iota 5216  df-fv 5263  df-ov 5922  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-inn 8985  df-n0 9244
This theorem is referenced by:  xnn0nnen  10511  expnegap0  10621  hashfiv01gt1  10856  bezoutlemmain  12138  lgsneg1  15182
  Copyright terms: Public domain W3C validator