ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xnn0nnen Unicode version

Theorem xnn0nnen 10589
Description: The set of extended nonnegative integers is equinumerous to the set of natural numbers. (Contributed by Jim Kingdon, 14-Jul-2025.)
Assertion
Ref Expression
xnn0nnen  |- NN0*  ~~  NN

Proof of Theorem xnn0nnen
StepHypRef Expression
1 fnresi 5399 . . . . . . . 8  |-  (  _I  |`  NN0 )  Fn  NN0
2 pnfex 8133 . . . . . . . . 9  |- +oo  e.  _V
3 neg1z 9411 . . . . . . . . . 10  |-  -u 1  e.  ZZ
43elexi 2785 . . . . . . . . 9  |-  -u 1  e.  _V
52, 4fnsn 5333 . . . . . . . 8  |-  { <. +oo ,  -u 1 >. }  Fn  { +oo }
61, 5pm3.2i 272 . . . . . . 7  |-  ( (  _I  |`  NN0 )  Fn 
NN0  /\  { <. +oo ,  -u 1 >. }  Fn  { +oo } )
7 disj 3510 . . . . . . . 8  |-  ( ( NN0  i^i  { +oo } )  =  (/)  <->  A. x  e.  NN0  -.  x  e. 
{ +oo } )
8 nn0nepnf 9373 . . . . . . . . 9  |-  ( x  e.  NN0  ->  x  =/= +oo )
9 nelsn 3669 . . . . . . . . 9  |-  ( x  =/= +oo  ->  -.  x  e.  { +oo } )
108, 9syl 14 . . . . . . . 8  |-  ( x  e.  NN0  ->  -.  x  e.  { +oo } )
117, 10mprgbir 2565 . . . . . . 7  |-  ( NN0 
i^i  { +oo } )  =  (/)
12 fnun 5387 . . . . . . 7  |-  ( ( ( (  _I  |`  NN0 )  Fn  NN0  /\  { <. +oo ,  -u 1 >. }  Fn  { +oo } )  /\  ( NN0  i^i  { +oo } )  =  (/) )  -> 
( (  _I  |`  NN0 )  u.  { <. +oo ,  -u
1 >. } )  Fn  ( NN0  u.  { +oo } ) )
136, 11, 12mp2an 426 . . . . . 6  |-  ( (  _I  |`  NN0 )  u. 
{ <. +oo ,  -u 1 >. } )  Fn  ( NN0  u.  { +oo }
)
14 uncom 3318 . . . . . . 7  |-  ( (  _I  |`  NN0 )  u. 
{ <. +oo ,  -u 1 >. } )  =  ( { <. +oo ,  -u
1 >. }  u.  (  _I  |`  NN0 ) )
15 df-xnn0 9366 . . . . . . . 8  |- NN0*  =  ( NN0  u.  { +oo } )
1615eqcomi 2210 . . . . . . 7  |-  ( NN0 
u.  { +oo } )  = NN0*
17 fneq12 5372 . . . . . . 7  |-  ( ( ( (  _I  |`  NN0 )  u.  { <. +oo ,  -u
1 >. } )  =  ( { <. +oo ,  -u 1 >. }  u.  (  _I  |`  NN0 ) )  /\  ( NN0  u.  { +oo } )  = NN0* )  ->  ( (
(  _I  |`  NN0 )  u.  { <. +oo ,  -u
1 >. } )  Fn  ( NN0  u.  { +oo } )  <->  ( { <. +oo ,  -u 1 >. }  u.  (  _I  |`  NN0 ) )  Fn NN0*
) )
1814, 16, 17mp2an 426 . . . . . 6  |-  ( ( (  _I  |`  NN0 )  u.  { <. +oo ,  -u
1 >. } )  Fn  ( NN0  u.  { +oo } )  <->  ( { <. +oo ,  -u 1 >. }  u.  (  _I  |`  NN0 ) )  Fn NN0*
)
1913, 18mpbi 145 . . . . 5  |-  ( {
<. +oo ,  -u 1 >. }  u.  (  _I  |`  NN0 ) )  Fn NN0*
204, 2fnsn 5333 . . . . . . . . . 10  |-  { <. -u 1 , +oo >. }  Fn  { -u 1 }
2120, 1pm3.2i 272 . . . . . . . . 9  |-  ( {
<. -u 1 , +oo >. }  Fn  { -u 1 }  /\  (  _I  |`  NN0 )  Fn  NN0 )
22 disj 3510 . . . . . . . . . 10  |-  ( ( { -u 1 }  i^i  NN0 )  =  (/)  <->  A. x  e.  { -u 1 }  -.  x  e.  NN0 )
23 neg1lt0 9151 . . . . . . . . . . . 12  |-  -u 1  <  0
24 nn0nlt0 9328 . . . . . . . . . . . 12  |-  ( -u
1  e.  NN0  ->  -.  -u 1  <  0
)
2523, 24mt2 641 . . . . . . . . . . 11  |-  -.  -u 1  e.  NN0
26 elsni 3652 . . . . . . . . . . . 12  |-  ( x  e.  { -u 1 }  ->  x  =  -u
1 )
2726eleq1d 2275 . . . . . . . . . . 11  |-  ( x  e.  { -u 1 }  ->  ( x  e. 
NN0 
<-> 
-u 1  e.  NN0 ) )
2825, 27mtbiri 677 . . . . . . . . . 10  |-  ( x  e.  { -u 1 }  ->  -.  x  e.  NN0 )
2922, 28mprgbir 2565 . . . . . . . . 9  |-  ( {
-u 1 }  i^i  NN0 )  =  (/)
30 fnun 5387 . . . . . . . . 9  |-  ( ( ( { <. -u 1 , +oo >. }  Fn  { -u 1 }  /\  (  _I  |`  NN0 )  Fn 
NN0 )  /\  ( { -u 1 }  i^i  NN0 )  =  (/) )  -> 
( { <. -u 1 , +oo >. }  u.  (  _I  |`  NN0 ) )  Fn  ( { -u
1 }  u.  NN0 ) )
3121, 29, 30mp2an 426 . . . . . . . 8  |-  ( {
<. -u 1 , +oo >. }  u.  (  _I  |` 
NN0 ) )  Fn  ( { -u 1 }  u.  NN0 )
32 cnvun 5093 . . . . . . . . . 10  |-  `' ( { <. +oo ,  -u
1 >. }  u.  (  _I  |`  NN0 ) )  =  ( `' { <. +oo ,  -u 1 >. }  u.  `' (  _I  |`  NN0 ) )
332, 4cnvsn 5170 . . . . . . . . . . 11  |-  `' { <. +oo ,  -u 1 >. }  =  { <. -u 1 , +oo >. }
34 cnvresid 5353 . . . . . . . . . . 11  |-  `' (  _I  |`  NN0 )  =  (  _I  |`  NN0 )
3533, 34uneq12i 3326 . . . . . . . . . 10  |-  ( `' { <. +oo ,  -u
1 >. }  u.  `' (  _I  |`  NN0 )
)  =  ( {
<. -u 1 , +oo >. }  u.  (  _I  |` 
NN0 ) )
3632, 35eqtri 2227 . . . . . . . . 9  |-  `' ( { <. +oo ,  -u
1 >. }  u.  (  _I  |`  NN0 ) )  =  ( { <. -u 1 , +oo >. }  u.  (  _I  |`  NN0 )
)
3736fneq1i 5373 . . . . . . . 8  |-  ( `' ( { <. +oo ,  -u 1 >. }  u.  (  _I  |`  NN0 ) )  Fn  ( { -u
1 }  u.  NN0 ) 
<->  ( { <. -u 1 , +oo >. }  u.  (  _I  |`  NN0 ) )  Fn  ( { -u
1 }  u.  NN0 ) )
3831, 37mpbir 146 . . . . . . 7  |-  `' ( { <. +oo ,  -u
1 >. }  u.  (  _I  |`  NN0 ) )  Fn  ( { -u
1 }  u.  NN0 )
39 fzosn 10341 . . . . . . . . . . 11  |-  ( -u
1  e.  ZZ  ->  (
-u 1..^ ( -u
1  +  1 ) )  =  { -u
1 } )
403, 39ax-mp 5 . . . . . . . . . 10  |-  ( -u
1..^ ( -u 1  +  1 ) )  =  { -u 1 }
41 ax-1cn 8025 . . . . . . . . . . . . 13  |-  1  e.  CC
4241, 41negsubdii 8364 . . . . . . . . . . . 12  |-  -u (
1  -  1 )  =  ( -u 1  +  1 )
43 1m1e0 9112 . . . . . . . . . . . . 13  |-  ( 1  -  1 )  =  0
4441, 41subcli 8355 . . . . . . . . . . . . . 14  |-  ( 1  -  1 )  e.  CC
45 negeq0 8333 . . . . . . . . . . . . . 14  |-  ( ( 1  -  1 )  e.  CC  ->  (
( 1  -  1 )  =  0  <->  -u (
1  -  1 )  =  0 ) )
4644, 45ax-mp 5 . . . . . . . . . . . . 13  |-  ( ( 1  -  1 )  =  0  <->  -u ( 1  -  1 )  =  0 )
4743, 46mpbi 145 . . . . . . . . . . . 12  |-  -u (
1  -  1 )  =  0
4842, 47eqtr3i 2229 . . . . . . . . . . 11  |-  ( -u
1  +  1 )  =  0
4948oveq2i 5962 . . . . . . . . . 10  |-  ( -u
1..^ ( -u 1  +  1 ) )  =  ( -u 1..^ 0 )
5040, 49eqtr3i 2229 . . . . . . . . 9  |-  { -u
1 }  =  (
-u 1..^ 0 )
51 nn0uz 9690 . . . . . . . . 9  |-  NN0  =  ( ZZ>= `  0 )
5250, 51uneq12i 3326 . . . . . . . 8  |-  ( {
-u 1 }  u.  NN0 )  =  ( (
-u 1..^ 0 )  u.  ( ZZ>= `  0
) )
5352fneq2i 5374 . . . . . . 7  |-  ( `' ( { <. +oo ,  -u 1 >. }  u.  (  _I  |`  NN0 ) )  Fn  ( { -u
1 }  u.  NN0 ) 
<->  `' ( { <. +oo ,  -u 1 >. }  u.  (  _I  |`  NN0 )
)  Fn  ( (
-u 1..^ 0 )  u.  ( ZZ>= `  0
) ) )
5438, 53mpbi 145 . . . . . 6  |-  `' ( { <. +oo ,  -u
1 >. }  u.  (  _I  |`  NN0 ) )  Fn  ( ( -u
1..^ 0 )  u.  ( ZZ>= `  0 )
)
55 0z 9390 . . . . . . . . 9  |-  0  e.  ZZ
56 neg1rr 9149 . . . . . . . . . 10  |-  -u 1  e.  RR
57 0re 8079 . . . . . . . . . 10  |-  0  e.  RR
5856, 57, 23ltleii 8182 . . . . . . . . 9  |-  -u 1  <_  0
59 eluz2 9661 . . . . . . . . 9  |-  ( 0  e.  ( ZZ>= `  -u 1
)  <->  ( -u 1  e.  ZZ  /\  0  e.  ZZ  /\  -u 1  <_  0 ) )
603, 55, 58, 59mpbir3an 1182 . . . . . . . 8  |-  0  e.  ( ZZ>= `  -u 1 )
61 fzouzsplit 10310 . . . . . . . 8  |-  ( 0  e.  ( ZZ>= `  -u 1
)  ->  ( ZZ>= `  -u 1 )  =  ( ( -u 1..^ 0 )  u.  ( ZZ>= ` 
0 ) ) )
6260, 61ax-mp 5 . . . . . . 7  |-  ( ZZ>= `  -u 1 )  =  ( ( -u 1..^ 0 )  u.  ( ZZ>= ` 
0 ) )
6362fneq2i 5374 . . . . . 6  |-  ( `' ( { <. +oo ,  -u 1 >. }  u.  (  _I  |`  NN0 ) )  Fn  ( ZZ>= `  -u 1
)  <->  `' ( { <. +oo ,  -u 1 >. }  u.  (  _I  |`  NN0 )
)  Fn  ( (
-u 1..^ 0 )  u.  ( ZZ>= `  0
) ) )
6454, 63mpbir 146 . . . . 5  |-  `' ( { <. +oo ,  -u
1 >. }  u.  (  _I  |`  NN0 ) )  Fn  ( ZZ>= `  -u 1
)
6519, 64pm3.2i 272 . . . 4  |-  ( ( { <. +oo ,  -u
1 >. }  u.  (  _I  |`  NN0 ) )  Fn NN0*  /\  `' ( { <. +oo ,  -u 1 >. }  u.  (  _I  |`  NN0 ) )  Fn  ( ZZ>= `  -u 1 ) )
66 dff1o4 5537 . . . 4  |-  ( ( { <. +oo ,  -u
1 >. }  u.  (  _I  |`  NN0 ) ) :NN0*
-1-1-onto-> ( ZZ>= `  -u 1 )  <-> 
( ( { <. +oo ,  -u 1 >. }  u.  (  _I  |`  NN0 )
)  Fn NN0*  /\  `' ( { <. +oo ,  -u
1 >. }  u.  (  _I  |`  NN0 ) )  Fn  ( ZZ>= `  -u 1
) ) )
6765, 66mpbir 146 . . 3  |-  ( {
<. +oo ,  -u 1 >. }  u.  (  _I  |`  NN0 ) ) :NN0* -1-1-onto-> (
ZZ>= `  -u 1 )
68 nn0ex 9308 . . . . . 6  |-  NN0  e.  _V
692snex 4233 . . . . . 6  |-  { +oo }  e.  _V
7068, 69unex 4492 . . . . 5  |-  ( NN0 
u.  { +oo } )  e.  _V
7115, 70eqeltri 2279 . . . 4  |- NN0*  e.  _V
7271f1oen 6857 . . 3  |-  ( ( { <. +oo ,  -u
1 >. }  u.  (  _I  |`  NN0 ) ) :NN0*
-1-1-onto-> ( ZZ>= `  -u 1 )  -> NN0*  ~~  ( ZZ>= `  -u 1
) )
7367, 72ax-mp 5 . 2  |- NN0*  ~~  ( ZZ>=
`  -u 1 )
74 uzennn 10588 . . 3  |-  ( -u
1  e.  ZZ  ->  (
ZZ>= `  -u 1 )  ~~  NN )
753, 74ax-mp 5 . 2  |-  ( ZZ>= `  -u 1 )  ~~  NN
7673, 75entri 6885 1  |- NN0*  ~~  NN
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2177    =/= wne 2377   _Vcvv 2773    u. cun 3165    i^i cin 3166   (/)c0 3461   {csn 3634   <.cop 3637   class class class wbr 4047    _I cid 4339   `'ccnv 4678    |` cres 4681    Fn wfn 5271   -1-1-onto->wf1o 5275   ` cfv 5276  (class class class)co 5951    ~~ cen 6832   CCcc 7930   0cc0 7932   1c1 7933    + caddc 7935   +oocpnf 8111    < clt 8114    <_ cle 8115    - cmin 8250   -ucneg 8251   NNcn 9043   NN0cn0 9302  NN0*cxnn0 9365   ZZcz 9379   ZZ>=cuz 9655  ..^cfzo 10271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-addcom 8032  ax-addass 8034  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-0id 8040  ax-rnegex 8041  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-apti 8047  ax-pre-ltadd 8048
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-er 6627  df-en 6835  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-inn 9044  df-n0 9303  df-xnn0 9366  df-z 9380  df-uz 9656  df-fz 10138  df-fzo 10272
This theorem is referenced by:  nninfct  12406
  Copyright terms: Public domain W3C validator