ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xnn0nnen Unicode version

Theorem xnn0nnen 10654
Description: The set of extended nonnegative integers is equinumerous to the set of natural numbers. (Contributed by Jim Kingdon, 14-Jul-2025.)
Assertion
Ref Expression
xnn0nnen  |- NN0*  ~~  NN

Proof of Theorem xnn0nnen
StepHypRef Expression
1 fnresi 5440 . . . . . . . 8  |-  (  _I  |`  NN0 )  Fn  NN0
2 pnfex 8196 . . . . . . . . 9  |- +oo  e.  _V
3 neg1z 9474 . . . . . . . . . 10  |-  -u 1  e.  ZZ
43elexi 2812 . . . . . . . . 9  |-  -u 1  e.  _V
52, 4fnsn 5374 . . . . . . . 8  |-  { <. +oo ,  -u 1 >. }  Fn  { +oo }
61, 5pm3.2i 272 . . . . . . 7  |-  ( (  _I  |`  NN0 )  Fn 
NN0  /\  { <. +oo ,  -u 1 >. }  Fn  { +oo } )
7 disj 3540 . . . . . . . 8  |-  ( ( NN0  i^i  { +oo } )  =  (/)  <->  A. x  e.  NN0  -.  x  e. 
{ +oo } )
8 nn0nepnf 9436 . . . . . . . . 9  |-  ( x  e.  NN0  ->  x  =/= +oo )
9 nelsn 3701 . . . . . . . . 9  |-  ( x  =/= +oo  ->  -.  x  e.  { +oo } )
108, 9syl 14 . . . . . . . 8  |-  ( x  e.  NN0  ->  -.  x  e.  { +oo } )
117, 10mprgbir 2588 . . . . . . 7  |-  ( NN0 
i^i  { +oo } )  =  (/)
12 fnun 5428 . . . . . . 7  |-  ( ( ( (  _I  |`  NN0 )  Fn  NN0  /\  { <. +oo ,  -u 1 >. }  Fn  { +oo } )  /\  ( NN0  i^i  { +oo } )  =  (/) )  -> 
( (  _I  |`  NN0 )  u.  { <. +oo ,  -u
1 >. } )  Fn  ( NN0  u.  { +oo } ) )
136, 11, 12mp2an 426 . . . . . 6  |-  ( (  _I  |`  NN0 )  u. 
{ <. +oo ,  -u 1 >. } )  Fn  ( NN0  u.  { +oo }
)
14 uncom 3348 . . . . . . 7  |-  ( (  _I  |`  NN0 )  u. 
{ <. +oo ,  -u 1 >. } )  =  ( { <. +oo ,  -u
1 >. }  u.  (  _I  |`  NN0 ) )
15 df-xnn0 9429 . . . . . . . 8  |- NN0*  =  ( NN0  u.  { +oo } )
1615eqcomi 2233 . . . . . . 7  |-  ( NN0 
u.  { +oo } )  = NN0*
17 fneq12 5413 . . . . . . 7  |-  ( ( ( (  _I  |`  NN0 )  u.  { <. +oo ,  -u
1 >. } )  =  ( { <. +oo ,  -u 1 >. }  u.  (  _I  |`  NN0 ) )  /\  ( NN0  u.  { +oo } )  = NN0* )  ->  ( (
(  _I  |`  NN0 )  u.  { <. +oo ,  -u
1 >. } )  Fn  ( NN0  u.  { +oo } )  <->  ( { <. +oo ,  -u 1 >. }  u.  (  _I  |`  NN0 ) )  Fn NN0*
) )
1814, 16, 17mp2an 426 . . . . . 6  |-  ( ( (  _I  |`  NN0 )  u.  { <. +oo ,  -u
1 >. } )  Fn  ( NN0  u.  { +oo } )  <->  ( { <. +oo ,  -u 1 >. }  u.  (  _I  |`  NN0 ) )  Fn NN0*
)
1913, 18mpbi 145 . . . . 5  |-  ( {
<. +oo ,  -u 1 >. }  u.  (  _I  |`  NN0 ) )  Fn NN0*
204, 2fnsn 5374 . . . . . . . . . 10  |-  { <. -u 1 , +oo >. }  Fn  { -u 1 }
2120, 1pm3.2i 272 . . . . . . . . 9  |-  ( {
<. -u 1 , +oo >. }  Fn  { -u 1 }  /\  (  _I  |`  NN0 )  Fn  NN0 )
22 disj 3540 . . . . . . . . . 10  |-  ( ( { -u 1 }  i^i  NN0 )  =  (/)  <->  A. x  e.  { -u 1 }  -.  x  e.  NN0 )
23 neg1lt0 9214 . . . . . . . . . . . 12  |-  -u 1  <  0
24 nn0nlt0 9391 . . . . . . . . . . . 12  |-  ( -u
1  e.  NN0  ->  -.  -u 1  <  0
)
2523, 24mt2 643 . . . . . . . . . . 11  |-  -.  -u 1  e.  NN0
26 elsni 3684 . . . . . . . . . . . 12  |-  ( x  e.  { -u 1 }  ->  x  =  -u
1 )
2726eleq1d 2298 . . . . . . . . . . 11  |-  ( x  e.  { -u 1 }  ->  ( x  e. 
NN0 
<-> 
-u 1  e.  NN0 ) )
2825, 27mtbiri 679 . . . . . . . . . 10  |-  ( x  e.  { -u 1 }  ->  -.  x  e.  NN0 )
2922, 28mprgbir 2588 . . . . . . . . 9  |-  ( {
-u 1 }  i^i  NN0 )  =  (/)
30 fnun 5428 . . . . . . . . 9  |-  ( ( ( { <. -u 1 , +oo >. }  Fn  { -u 1 }  /\  (  _I  |`  NN0 )  Fn 
NN0 )  /\  ( { -u 1 }  i^i  NN0 )  =  (/) )  -> 
( { <. -u 1 , +oo >. }  u.  (  _I  |`  NN0 ) )  Fn  ( { -u
1 }  u.  NN0 ) )
3121, 29, 30mp2an 426 . . . . . . . 8  |-  ( {
<. -u 1 , +oo >. }  u.  (  _I  |` 
NN0 ) )  Fn  ( { -u 1 }  u.  NN0 )
32 cnvun 5133 . . . . . . . . . 10  |-  `' ( { <. +oo ,  -u
1 >. }  u.  (  _I  |`  NN0 ) )  =  ( `' { <. +oo ,  -u 1 >. }  u.  `' (  _I  |`  NN0 ) )
332, 4cnvsn 5210 . . . . . . . . . . 11  |-  `' { <. +oo ,  -u 1 >. }  =  { <. -u 1 , +oo >. }
34 cnvresid 5394 . . . . . . . . . . 11  |-  `' (  _I  |`  NN0 )  =  (  _I  |`  NN0 )
3533, 34uneq12i 3356 . . . . . . . . . 10  |-  ( `' { <. +oo ,  -u
1 >. }  u.  `' (  _I  |`  NN0 )
)  =  ( {
<. -u 1 , +oo >. }  u.  (  _I  |` 
NN0 ) )
3632, 35eqtri 2250 . . . . . . . . 9  |-  `' ( { <. +oo ,  -u
1 >. }  u.  (  _I  |`  NN0 ) )  =  ( { <. -u 1 , +oo >. }  u.  (  _I  |`  NN0 )
)
3736fneq1i 5414 . . . . . . . 8  |-  ( `' ( { <. +oo ,  -u 1 >. }  u.  (  _I  |`  NN0 ) )  Fn  ( { -u
1 }  u.  NN0 ) 
<->  ( { <. -u 1 , +oo >. }  u.  (  _I  |`  NN0 ) )  Fn  ( { -u
1 }  u.  NN0 ) )
3831, 37mpbir 146 . . . . . . 7  |-  `' ( { <. +oo ,  -u
1 >. }  u.  (  _I  |`  NN0 ) )  Fn  ( { -u
1 }  u.  NN0 )
39 fzosn 10406 . . . . . . . . . . 11  |-  ( -u
1  e.  ZZ  ->  (
-u 1..^ ( -u
1  +  1 ) )  =  { -u
1 } )
403, 39ax-mp 5 . . . . . . . . . 10  |-  ( -u
1..^ ( -u 1  +  1 ) )  =  { -u 1 }
41 ax-1cn 8088 . . . . . . . . . . . . 13  |-  1  e.  CC
4241, 41negsubdii 8427 . . . . . . . . . . . 12  |-  -u (
1  -  1 )  =  ( -u 1  +  1 )
43 1m1e0 9175 . . . . . . . . . . . . 13  |-  ( 1  -  1 )  =  0
4441, 41subcli 8418 . . . . . . . . . . . . . 14  |-  ( 1  -  1 )  e.  CC
45 negeq0 8396 . . . . . . . . . . . . . 14  |-  ( ( 1  -  1 )  e.  CC  ->  (
( 1  -  1 )  =  0  <->  -u (
1  -  1 )  =  0 ) )
4644, 45ax-mp 5 . . . . . . . . . . . . 13  |-  ( ( 1  -  1 )  =  0  <->  -u ( 1  -  1 )  =  0 )
4743, 46mpbi 145 . . . . . . . . . . . 12  |-  -u (
1  -  1 )  =  0
4842, 47eqtr3i 2252 . . . . . . . . . . 11  |-  ( -u
1  +  1 )  =  0
4948oveq2i 6011 . . . . . . . . . 10  |-  ( -u
1..^ ( -u 1  +  1 ) )  =  ( -u 1..^ 0 )
5040, 49eqtr3i 2252 . . . . . . . . 9  |-  { -u
1 }  =  (
-u 1..^ 0 )
51 nn0uz 9753 . . . . . . . . 9  |-  NN0  =  ( ZZ>= `  0 )
5250, 51uneq12i 3356 . . . . . . . 8  |-  ( {
-u 1 }  u.  NN0 )  =  ( (
-u 1..^ 0 )  u.  ( ZZ>= `  0
) )
5352fneq2i 5415 . . . . . . 7  |-  ( `' ( { <. +oo ,  -u 1 >. }  u.  (  _I  |`  NN0 ) )  Fn  ( { -u
1 }  u.  NN0 ) 
<->  `' ( { <. +oo ,  -u 1 >. }  u.  (  _I  |`  NN0 )
)  Fn  ( (
-u 1..^ 0 )  u.  ( ZZ>= `  0
) ) )
5438, 53mpbi 145 . . . . . 6  |-  `' ( { <. +oo ,  -u
1 >. }  u.  (  _I  |`  NN0 ) )  Fn  ( ( -u
1..^ 0 )  u.  ( ZZ>= `  0 )
)
55 0z 9453 . . . . . . . . 9  |-  0  e.  ZZ
56 neg1rr 9212 . . . . . . . . . 10  |-  -u 1  e.  RR
57 0re 8142 . . . . . . . . . 10  |-  0  e.  RR
5856, 57, 23ltleii 8245 . . . . . . . . 9  |-  -u 1  <_  0
59 eluz2 9724 . . . . . . . . 9  |-  ( 0  e.  ( ZZ>= `  -u 1
)  <->  ( -u 1  e.  ZZ  /\  0  e.  ZZ  /\  -u 1  <_  0 ) )
603, 55, 58, 59mpbir3an 1203 . . . . . . . 8  |-  0  e.  ( ZZ>= `  -u 1 )
61 fzouzsplit 10373 . . . . . . . 8  |-  ( 0  e.  ( ZZ>= `  -u 1
)  ->  ( ZZ>= `  -u 1 )  =  ( ( -u 1..^ 0 )  u.  ( ZZ>= ` 
0 ) ) )
6260, 61ax-mp 5 . . . . . . 7  |-  ( ZZ>= `  -u 1 )  =  ( ( -u 1..^ 0 )  u.  ( ZZ>= ` 
0 ) )
6362fneq2i 5415 . . . . . 6  |-  ( `' ( { <. +oo ,  -u 1 >. }  u.  (  _I  |`  NN0 ) )  Fn  ( ZZ>= `  -u 1
)  <->  `' ( { <. +oo ,  -u 1 >. }  u.  (  _I  |`  NN0 )
)  Fn  ( (
-u 1..^ 0 )  u.  ( ZZ>= `  0
) ) )
6454, 63mpbir 146 . . . . 5  |-  `' ( { <. +oo ,  -u
1 >. }  u.  (  _I  |`  NN0 ) )  Fn  ( ZZ>= `  -u 1
)
6519, 64pm3.2i 272 . . . 4  |-  ( ( { <. +oo ,  -u
1 >. }  u.  (  _I  |`  NN0 ) )  Fn NN0*  /\  `' ( { <. +oo ,  -u 1 >. }  u.  (  _I  |`  NN0 ) )  Fn  ( ZZ>= `  -u 1 ) )
66 dff1o4 5579 . . . 4  |-  ( ( { <. +oo ,  -u
1 >. }  u.  (  _I  |`  NN0 ) ) :NN0*
-1-1-onto-> ( ZZ>= `  -u 1 )  <-> 
( ( { <. +oo ,  -u 1 >. }  u.  (  _I  |`  NN0 )
)  Fn NN0*  /\  `' ( { <. +oo ,  -u
1 >. }  u.  (  _I  |`  NN0 ) )  Fn  ( ZZ>= `  -u 1
) ) )
6765, 66mpbir 146 . . 3  |-  ( {
<. +oo ,  -u 1 >. }  u.  (  _I  |`  NN0 ) ) :NN0* -1-1-onto-> (
ZZ>= `  -u 1 )
68 nn0ex 9371 . . . . . 6  |-  NN0  e.  _V
692snex 4268 . . . . . 6  |-  { +oo }  e.  _V
7068, 69unex 4531 . . . . 5  |-  ( NN0 
u.  { +oo } )  e.  _V
7115, 70eqeltri 2302 . . . 4  |- NN0*  e.  _V
7271f1oen 6908 . . 3  |-  ( ( { <. +oo ,  -u
1 >. }  u.  (  _I  |`  NN0 ) ) :NN0*
-1-1-onto-> ( ZZ>= `  -u 1 )  -> NN0*  ~~  ( ZZ>= `  -u 1
) )
7367, 72ax-mp 5 . 2  |- NN0*  ~~  ( ZZ>=
`  -u 1 )
74 uzennn 10653 . . 3  |-  ( -u
1  e.  ZZ  ->  (
ZZ>= `  -u 1 )  ~~  NN )
753, 74ax-mp 5 . 2  |-  ( ZZ>= `  -u 1 )  ~~  NN
7673, 75entri 6936 1  |- NN0*  ~~  NN
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200    =/= wne 2400   _Vcvv 2799    u. cun 3195    i^i cin 3196   (/)c0 3491   {csn 3666   <.cop 3669   class class class wbr 4082    _I cid 4378   `'ccnv 4717    |` cres 4720    Fn wfn 5312   -1-1-onto->wf1o 5316   ` cfv 5317  (class class class)co 6000    ~~ cen 6883   CCcc 7993   0cc0 7995   1c1 7996    + caddc 7998   +oocpnf 8174    < clt 8177    <_ cle 8178    - cmin 8313   -ucneg 8314   NNcn 9106   NN0cn0 9365  NN0*cxnn0 9428   ZZcz 9442   ZZ>=cuz 9718  ..^cfzo 10334
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-er 6678  df-en 6886  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-inn 9107  df-n0 9366  df-xnn0 9429  df-z 9443  df-uz 9719  df-fz 10201  df-fzo 10335
This theorem is referenced by:  nninfct  12557
  Copyright terms: Public domain W3C validator