ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xnn0nnen Unicode version

Theorem xnn0nnen 10546
Description: The set of extended nonnegative integers is equinumerous to the set of natural numbers. (Contributed by Jim Kingdon, 14-Jul-2025.)
Assertion
Ref Expression
xnn0nnen  |- NN0*  ~~  NN

Proof of Theorem xnn0nnen
StepHypRef Expression
1 fnresi 5378 . . . . . . . 8  |-  (  _I  |`  NN0 )  Fn  NN0
2 pnfex 8097 . . . . . . . . 9  |- +oo  e.  _V
3 neg1z 9375 . . . . . . . . . 10  |-  -u 1  e.  ZZ
43elexi 2775 . . . . . . . . 9  |-  -u 1  e.  _V
52, 4fnsn 5313 . . . . . . . 8  |-  { <. +oo ,  -u 1 >. }  Fn  { +oo }
61, 5pm3.2i 272 . . . . . . 7  |-  ( (  _I  |`  NN0 )  Fn 
NN0  /\  { <. +oo ,  -u 1 >. }  Fn  { +oo } )
7 disj 3500 . . . . . . . 8  |-  ( ( NN0  i^i  { +oo } )  =  (/)  <->  A. x  e.  NN0  -.  x  e. 
{ +oo } )
8 nn0nepnf 9337 . . . . . . . . 9  |-  ( x  e.  NN0  ->  x  =/= +oo )
9 nelsn 3658 . . . . . . . . 9  |-  ( x  =/= +oo  ->  -.  x  e.  { +oo } )
108, 9syl 14 . . . . . . . 8  |-  ( x  e.  NN0  ->  -.  x  e.  { +oo } )
117, 10mprgbir 2555 . . . . . . 7  |-  ( NN0 
i^i  { +oo } )  =  (/)
12 fnun 5367 . . . . . . 7  |-  ( ( ( (  _I  |`  NN0 )  Fn  NN0  /\  { <. +oo ,  -u 1 >. }  Fn  { +oo } )  /\  ( NN0  i^i  { +oo } )  =  (/) )  -> 
( (  _I  |`  NN0 )  u.  { <. +oo ,  -u
1 >. } )  Fn  ( NN0  u.  { +oo } ) )
136, 11, 12mp2an 426 . . . . . 6  |-  ( (  _I  |`  NN0 )  u. 
{ <. +oo ,  -u 1 >. } )  Fn  ( NN0  u.  { +oo }
)
14 uncom 3308 . . . . . . 7  |-  ( (  _I  |`  NN0 )  u. 
{ <. +oo ,  -u 1 >. } )  =  ( { <. +oo ,  -u
1 >. }  u.  (  _I  |`  NN0 ) )
15 df-xnn0 9330 . . . . . . . 8  |- NN0*  =  ( NN0  u.  { +oo } )
1615eqcomi 2200 . . . . . . 7  |-  ( NN0 
u.  { +oo } )  = NN0*
17 fneq12 5352 . . . . . . 7  |-  ( ( ( (  _I  |`  NN0 )  u.  { <. +oo ,  -u
1 >. } )  =  ( { <. +oo ,  -u 1 >. }  u.  (  _I  |`  NN0 ) )  /\  ( NN0  u.  { +oo } )  = NN0* )  ->  ( (
(  _I  |`  NN0 )  u.  { <. +oo ,  -u
1 >. } )  Fn  ( NN0  u.  { +oo } )  <->  ( { <. +oo ,  -u 1 >. }  u.  (  _I  |`  NN0 ) )  Fn NN0*
) )
1814, 16, 17mp2an 426 . . . . . 6  |-  ( ( (  _I  |`  NN0 )  u.  { <. +oo ,  -u
1 >. } )  Fn  ( NN0  u.  { +oo } )  <->  ( { <. +oo ,  -u 1 >. }  u.  (  _I  |`  NN0 ) )  Fn NN0*
)
1913, 18mpbi 145 . . . . 5  |-  ( {
<. +oo ,  -u 1 >. }  u.  (  _I  |`  NN0 ) )  Fn NN0*
204, 2fnsn 5313 . . . . . . . . . 10  |-  { <. -u 1 , +oo >. }  Fn  { -u 1 }
2120, 1pm3.2i 272 . . . . . . . . 9  |-  ( {
<. -u 1 , +oo >. }  Fn  { -u 1 }  /\  (  _I  |`  NN0 )  Fn  NN0 )
22 disj 3500 . . . . . . . . . 10  |-  ( ( { -u 1 }  i^i  NN0 )  =  (/)  <->  A. x  e.  { -u 1 }  -.  x  e.  NN0 )
23 neg1lt0 9115 . . . . . . . . . . . 12  |-  -u 1  <  0
24 nn0nlt0 9292 . . . . . . . . . . . 12  |-  ( -u
1  e.  NN0  ->  -.  -u 1  <  0
)
2523, 24mt2 641 . . . . . . . . . . 11  |-  -.  -u 1  e.  NN0
26 elsni 3641 . . . . . . . . . . . 12  |-  ( x  e.  { -u 1 }  ->  x  =  -u
1 )
2726eleq1d 2265 . . . . . . . . . . 11  |-  ( x  e.  { -u 1 }  ->  ( x  e. 
NN0 
<-> 
-u 1  e.  NN0 ) )
2825, 27mtbiri 676 . . . . . . . . . 10  |-  ( x  e.  { -u 1 }  ->  -.  x  e.  NN0 )
2922, 28mprgbir 2555 . . . . . . . . 9  |-  ( {
-u 1 }  i^i  NN0 )  =  (/)
30 fnun 5367 . . . . . . . . 9  |-  ( ( ( { <. -u 1 , +oo >. }  Fn  { -u 1 }  /\  (  _I  |`  NN0 )  Fn 
NN0 )  /\  ( { -u 1 }  i^i  NN0 )  =  (/) )  -> 
( { <. -u 1 , +oo >. }  u.  (  _I  |`  NN0 ) )  Fn  ( { -u
1 }  u.  NN0 ) )
3121, 29, 30mp2an 426 . . . . . . . 8  |-  ( {
<. -u 1 , +oo >. }  u.  (  _I  |` 
NN0 ) )  Fn  ( { -u 1 }  u.  NN0 )
32 cnvun 5076 . . . . . . . . . 10  |-  `' ( { <. +oo ,  -u
1 >. }  u.  (  _I  |`  NN0 ) )  =  ( `' { <. +oo ,  -u 1 >. }  u.  `' (  _I  |`  NN0 ) )
332, 4cnvsn 5153 . . . . . . . . . . 11  |-  `' { <. +oo ,  -u 1 >. }  =  { <. -u 1 , +oo >. }
34 cnvresid 5333 . . . . . . . . . . 11  |-  `' (  _I  |`  NN0 )  =  (  _I  |`  NN0 )
3533, 34uneq12i 3316 . . . . . . . . . 10  |-  ( `' { <. +oo ,  -u
1 >. }  u.  `' (  _I  |`  NN0 )
)  =  ( {
<. -u 1 , +oo >. }  u.  (  _I  |` 
NN0 ) )
3632, 35eqtri 2217 . . . . . . . . 9  |-  `' ( { <. +oo ,  -u
1 >. }  u.  (  _I  |`  NN0 ) )  =  ( { <. -u 1 , +oo >. }  u.  (  _I  |`  NN0 )
)
3736fneq1i 5353 . . . . . . . 8  |-  ( `' ( { <. +oo ,  -u 1 >. }  u.  (  _I  |`  NN0 ) )  Fn  ( { -u
1 }  u.  NN0 ) 
<->  ( { <. -u 1 , +oo >. }  u.  (  _I  |`  NN0 ) )  Fn  ( { -u
1 }  u.  NN0 ) )
3831, 37mpbir 146 . . . . . . 7  |-  `' ( { <. +oo ,  -u
1 >. }  u.  (  _I  |`  NN0 ) )  Fn  ( { -u
1 }  u.  NN0 )
39 fzosn 10298 . . . . . . . . . . 11  |-  ( -u
1  e.  ZZ  ->  (
-u 1..^ ( -u
1  +  1 ) )  =  { -u
1 } )
403, 39ax-mp 5 . . . . . . . . . 10  |-  ( -u
1..^ ( -u 1  +  1 ) )  =  { -u 1 }
41 ax-1cn 7989 . . . . . . . . . . . . 13  |-  1  e.  CC
4241, 41negsubdii 8328 . . . . . . . . . . . 12  |-  -u (
1  -  1 )  =  ( -u 1  +  1 )
43 1m1e0 9076 . . . . . . . . . . . . 13  |-  ( 1  -  1 )  =  0
4441, 41subcli 8319 . . . . . . . . . . . . . 14  |-  ( 1  -  1 )  e.  CC
45 negeq0 8297 . . . . . . . . . . . . . 14  |-  ( ( 1  -  1 )  e.  CC  ->  (
( 1  -  1 )  =  0  <->  -u (
1  -  1 )  =  0 ) )
4644, 45ax-mp 5 . . . . . . . . . . . . 13  |-  ( ( 1  -  1 )  =  0  <->  -u ( 1  -  1 )  =  0 )
4743, 46mpbi 145 . . . . . . . . . . . 12  |-  -u (
1  -  1 )  =  0
4842, 47eqtr3i 2219 . . . . . . . . . . 11  |-  ( -u
1  +  1 )  =  0
4948oveq2i 5936 . . . . . . . . . 10  |-  ( -u
1..^ ( -u 1  +  1 ) )  =  ( -u 1..^ 0 )
5040, 49eqtr3i 2219 . . . . . . . . 9  |-  { -u
1 }  =  (
-u 1..^ 0 )
51 nn0uz 9653 . . . . . . . . 9  |-  NN0  =  ( ZZ>= `  0 )
5250, 51uneq12i 3316 . . . . . . . 8  |-  ( {
-u 1 }  u.  NN0 )  =  ( (
-u 1..^ 0 )  u.  ( ZZ>= `  0
) )
5352fneq2i 5354 . . . . . . 7  |-  ( `' ( { <. +oo ,  -u 1 >. }  u.  (  _I  |`  NN0 ) )  Fn  ( { -u
1 }  u.  NN0 ) 
<->  `' ( { <. +oo ,  -u 1 >. }  u.  (  _I  |`  NN0 )
)  Fn  ( (
-u 1..^ 0 )  u.  ( ZZ>= `  0
) ) )
5438, 53mpbi 145 . . . . . 6  |-  `' ( { <. +oo ,  -u
1 >. }  u.  (  _I  |`  NN0 ) )  Fn  ( ( -u
1..^ 0 )  u.  ( ZZ>= `  0 )
)
55 0z 9354 . . . . . . . . 9  |-  0  e.  ZZ
56 neg1rr 9113 . . . . . . . . . 10  |-  -u 1  e.  RR
57 0re 8043 . . . . . . . . . 10  |-  0  e.  RR
5856, 57, 23ltleii 8146 . . . . . . . . 9  |-  -u 1  <_  0
59 eluz2 9624 . . . . . . . . 9  |-  ( 0  e.  ( ZZ>= `  -u 1
)  <->  ( -u 1  e.  ZZ  /\  0  e.  ZZ  /\  -u 1  <_  0 ) )
603, 55, 58, 59mpbir3an 1181 . . . . . . . 8  |-  0  e.  ( ZZ>= `  -u 1 )
61 fzouzsplit 10272 . . . . . . . 8  |-  ( 0  e.  ( ZZ>= `  -u 1
)  ->  ( ZZ>= `  -u 1 )  =  ( ( -u 1..^ 0 )  u.  ( ZZ>= ` 
0 ) ) )
6260, 61ax-mp 5 . . . . . . 7  |-  ( ZZ>= `  -u 1 )  =  ( ( -u 1..^ 0 )  u.  ( ZZ>= ` 
0 ) )
6362fneq2i 5354 . . . . . 6  |-  ( `' ( { <. +oo ,  -u 1 >. }  u.  (  _I  |`  NN0 ) )  Fn  ( ZZ>= `  -u 1
)  <->  `' ( { <. +oo ,  -u 1 >. }  u.  (  _I  |`  NN0 )
)  Fn  ( (
-u 1..^ 0 )  u.  ( ZZ>= `  0
) ) )
6454, 63mpbir 146 . . . . 5  |-  `' ( { <. +oo ,  -u
1 >. }  u.  (  _I  |`  NN0 ) )  Fn  ( ZZ>= `  -u 1
)
6519, 64pm3.2i 272 . . . 4  |-  ( ( { <. +oo ,  -u
1 >. }  u.  (  _I  |`  NN0 ) )  Fn NN0*  /\  `' ( { <. +oo ,  -u 1 >. }  u.  (  _I  |`  NN0 ) )  Fn  ( ZZ>= `  -u 1 ) )
66 dff1o4 5515 . . . 4  |-  ( ( { <. +oo ,  -u
1 >. }  u.  (  _I  |`  NN0 ) ) :NN0*
-1-1-onto-> ( ZZ>= `  -u 1 )  <-> 
( ( { <. +oo ,  -u 1 >. }  u.  (  _I  |`  NN0 )
)  Fn NN0*  /\  `' ( { <. +oo ,  -u
1 >. }  u.  (  _I  |`  NN0 ) )  Fn  ( ZZ>= `  -u 1
) ) )
6765, 66mpbir 146 . . 3  |-  ( {
<. +oo ,  -u 1 >. }  u.  (  _I  |`  NN0 ) ) :NN0* -1-1-onto-> (
ZZ>= `  -u 1 )
68 nn0ex 9272 . . . . . 6  |-  NN0  e.  _V
692snex 4219 . . . . . 6  |-  { +oo }  e.  _V
7068, 69unex 4477 . . . . 5  |-  ( NN0 
u.  { +oo } )  e.  _V
7115, 70eqeltri 2269 . . . 4  |- NN0*  e.  _V
7271f1oen 6827 . . 3  |-  ( ( { <. +oo ,  -u
1 >. }  u.  (  _I  |`  NN0 ) ) :NN0*
-1-1-onto-> ( ZZ>= `  -u 1 )  -> NN0*  ~~  ( ZZ>= `  -u 1
) )
7367, 72ax-mp 5 . 2  |- NN0*  ~~  ( ZZ>=
`  -u 1 )
74 uzennn 10545 . . 3  |-  ( -u
1  e.  ZZ  ->  (
ZZ>= `  -u 1 )  ~~  NN )
753, 74ax-mp 5 . 2  |-  ( ZZ>= `  -u 1 )  ~~  NN
7673, 75entri 6854 1  |- NN0*  ~~  NN
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167    =/= wne 2367   _Vcvv 2763    u. cun 3155    i^i cin 3156   (/)c0 3451   {csn 3623   <.cop 3626   class class class wbr 4034    _I cid 4324   `'ccnv 4663    |` cres 4666    Fn wfn 5254   -1-1-onto->wf1o 5258   ` cfv 5259  (class class class)co 5925    ~~ cen 6806   CCcc 7894   0cc0 7896   1c1 7897    + caddc 7899   +oocpnf 8075    < clt 8078    <_ cle 8079    - cmin 8214   -ucneg 8215   NNcn 9007   NN0cn0 9266  NN0*cxnn0 9329   ZZcz 9343   ZZ>=cuz 9618  ..^cfzo 10234
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-er 6601  df-en 6809  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-inn 9008  df-n0 9267  df-xnn0 9330  df-z 9344  df-uz 9619  df-fz 10101  df-fzo 10235
This theorem is referenced by:  nninfct  12233
  Copyright terms: Public domain W3C validator