ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xnn0nnen Unicode version

Theorem xnn0nnen 10508
Description: The set of extended nonnegative integers is equinumerous to the set of natural numbers. (Contributed by Jim Kingdon, 14-Jul-2025.)
Assertion
Ref Expression
xnn0nnen  |- NN0*  ~~  NN

Proof of Theorem xnn0nnen
StepHypRef Expression
1 fnresi 5371 . . . . . . . 8  |-  (  _I  |`  NN0 )  Fn  NN0
2 pnfex 8073 . . . . . . . . 9  |- +oo  e.  _V
3 neg1z 9349 . . . . . . . . . 10  |-  -u 1  e.  ZZ
43elexi 2772 . . . . . . . . 9  |-  -u 1  e.  _V
52, 4fnsn 5308 . . . . . . . 8  |-  { <. +oo ,  -u 1 >. }  Fn  { +oo }
61, 5pm3.2i 272 . . . . . . 7  |-  ( (  _I  |`  NN0 )  Fn 
NN0  /\  { <. +oo ,  -u 1 >. }  Fn  { +oo } )
7 disj 3495 . . . . . . . 8  |-  ( ( NN0  i^i  { +oo } )  =  (/)  <->  A. x  e.  NN0  -.  x  e. 
{ +oo } )
8 nn0nepnf 9311 . . . . . . . . 9  |-  ( x  e.  NN0  ->  x  =/= +oo )
9 nelsn 3653 . . . . . . . . 9  |-  ( x  =/= +oo  ->  -.  x  e.  { +oo } )
108, 9syl 14 . . . . . . . 8  |-  ( x  e.  NN0  ->  -.  x  e.  { +oo } )
117, 10mprgbir 2552 . . . . . . 7  |-  ( NN0 
i^i  { +oo } )  =  (/)
12 fnun 5360 . . . . . . 7  |-  ( ( ( (  _I  |`  NN0 )  Fn  NN0  /\  { <. +oo ,  -u 1 >. }  Fn  { +oo } )  /\  ( NN0  i^i  { +oo } )  =  (/) )  -> 
( (  _I  |`  NN0 )  u.  { <. +oo ,  -u
1 >. } )  Fn  ( NN0  u.  { +oo } ) )
136, 11, 12mp2an 426 . . . . . 6  |-  ( (  _I  |`  NN0 )  u. 
{ <. +oo ,  -u 1 >. } )  Fn  ( NN0  u.  { +oo }
)
14 uncom 3303 . . . . . . 7  |-  ( (  _I  |`  NN0 )  u. 
{ <. +oo ,  -u 1 >. } )  =  ( { <. +oo ,  -u
1 >. }  u.  (  _I  |`  NN0 ) )
15 df-xnn0 9304 . . . . . . . 8  |- NN0*  =  ( NN0  u.  { +oo } )
1615eqcomi 2197 . . . . . . 7  |-  ( NN0 
u.  { +oo } )  = NN0*
17 fneq12 5347 . . . . . . 7  |-  ( ( ( (  _I  |`  NN0 )  u.  { <. +oo ,  -u
1 >. } )  =  ( { <. +oo ,  -u 1 >. }  u.  (  _I  |`  NN0 ) )  /\  ( NN0  u.  { +oo } )  = NN0* )  ->  ( (
(  _I  |`  NN0 )  u.  { <. +oo ,  -u
1 >. } )  Fn  ( NN0  u.  { +oo } )  <->  ( { <. +oo ,  -u 1 >. }  u.  (  _I  |`  NN0 ) )  Fn NN0*
) )
1814, 16, 17mp2an 426 . . . . . 6  |-  ( ( (  _I  |`  NN0 )  u.  { <. +oo ,  -u
1 >. } )  Fn  ( NN0  u.  { +oo } )  <->  ( { <. +oo ,  -u 1 >. }  u.  (  _I  |`  NN0 ) )  Fn NN0*
)
1913, 18mpbi 145 . . . . 5  |-  ( {
<. +oo ,  -u 1 >. }  u.  (  _I  |`  NN0 ) )  Fn NN0*
204, 2fnsn 5308 . . . . . . . . . 10  |-  { <. -u 1 , +oo >. }  Fn  { -u 1 }
2120, 1pm3.2i 272 . . . . . . . . 9  |-  ( {
<. -u 1 , +oo >. }  Fn  { -u 1 }  /\  (  _I  |`  NN0 )  Fn  NN0 )
22 disj 3495 . . . . . . . . . 10  |-  ( ( { -u 1 }  i^i  NN0 )  =  (/)  <->  A. x  e.  { -u 1 }  -.  x  e.  NN0 )
23 neg1lt0 9090 . . . . . . . . . . . 12  |-  -u 1  <  0
24 nn0nlt0 9266 . . . . . . . . . . . 12  |-  ( -u
1  e.  NN0  ->  -.  -u 1  <  0
)
2523, 24mt2 641 . . . . . . . . . . 11  |-  -.  -u 1  e.  NN0
26 elsni 3636 . . . . . . . . . . . 12  |-  ( x  e.  { -u 1 }  ->  x  =  -u
1 )
2726eleq1d 2262 . . . . . . . . . . 11  |-  ( x  e.  { -u 1 }  ->  ( x  e. 
NN0 
<-> 
-u 1  e.  NN0 ) )
2825, 27mtbiri 676 . . . . . . . . . 10  |-  ( x  e.  { -u 1 }  ->  -.  x  e.  NN0 )
2922, 28mprgbir 2552 . . . . . . . . 9  |-  ( {
-u 1 }  i^i  NN0 )  =  (/)
30 fnun 5360 . . . . . . . . 9  |-  ( ( ( { <. -u 1 , +oo >. }  Fn  { -u 1 }  /\  (  _I  |`  NN0 )  Fn 
NN0 )  /\  ( { -u 1 }  i^i  NN0 )  =  (/) )  -> 
( { <. -u 1 , +oo >. }  u.  (  _I  |`  NN0 ) )  Fn  ( { -u
1 }  u.  NN0 ) )
3121, 29, 30mp2an 426 . . . . . . . 8  |-  ( {
<. -u 1 , +oo >. }  u.  (  _I  |` 
NN0 ) )  Fn  ( { -u 1 }  u.  NN0 )
32 cnvun 5071 . . . . . . . . . 10  |-  `' ( { <. +oo ,  -u
1 >. }  u.  (  _I  |`  NN0 ) )  =  ( `' { <. +oo ,  -u 1 >. }  u.  `' (  _I  |`  NN0 ) )
332, 4cnvsn 5148 . . . . . . . . . . 11  |-  `' { <. +oo ,  -u 1 >. }  =  { <. -u 1 , +oo >. }
34 cnvresid 5328 . . . . . . . . . . 11  |-  `' (  _I  |`  NN0 )  =  (  _I  |`  NN0 )
3533, 34uneq12i 3311 . . . . . . . . . 10  |-  ( `' { <. +oo ,  -u
1 >. }  u.  `' (  _I  |`  NN0 )
)  =  ( {
<. -u 1 , +oo >. }  u.  (  _I  |` 
NN0 ) )
3632, 35eqtri 2214 . . . . . . . . 9  |-  `' ( { <. +oo ,  -u
1 >. }  u.  (  _I  |`  NN0 ) )  =  ( { <. -u 1 , +oo >. }  u.  (  _I  |`  NN0 )
)
3736fneq1i 5348 . . . . . . . 8  |-  ( `' ( { <. +oo ,  -u 1 >. }  u.  (  _I  |`  NN0 ) )  Fn  ( { -u
1 }  u.  NN0 ) 
<->  ( { <. -u 1 , +oo >. }  u.  (  _I  |`  NN0 ) )  Fn  ( { -u
1 }  u.  NN0 ) )
3831, 37mpbir 146 . . . . . . 7  |-  `' ( { <. +oo ,  -u
1 >. }  u.  (  _I  |`  NN0 ) )  Fn  ( { -u
1 }  u.  NN0 )
39 fzosn 10272 . . . . . . . . . . 11  |-  ( -u
1  e.  ZZ  ->  (
-u 1..^ ( -u
1  +  1 ) )  =  { -u
1 } )
403, 39ax-mp 5 . . . . . . . . . 10  |-  ( -u
1..^ ( -u 1  +  1 ) )  =  { -u 1 }
41 ax-1cn 7965 . . . . . . . . . . . . 13  |-  1  e.  CC
4241, 41negsubdii 8304 . . . . . . . . . . . 12  |-  -u (
1  -  1 )  =  ( -u 1  +  1 )
43 1m1e0 9051 . . . . . . . . . . . . 13  |-  ( 1  -  1 )  =  0
4441, 41subcli 8295 . . . . . . . . . . . . . 14  |-  ( 1  -  1 )  e.  CC
45 negeq0 8273 . . . . . . . . . . . . . 14  |-  ( ( 1  -  1 )  e.  CC  ->  (
( 1  -  1 )  =  0  <->  -u (
1  -  1 )  =  0 ) )
4644, 45ax-mp 5 . . . . . . . . . . . . 13  |-  ( ( 1  -  1 )  =  0  <->  -u ( 1  -  1 )  =  0 )
4743, 46mpbi 145 . . . . . . . . . . . 12  |-  -u (
1  -  1 )  =  0
4842, 47eqtr3i 2216 . . . . . . . . . . 11  |-  ( -u
1  +  1 )  =  0
4948oveq2i 5929 . . . . . . . . . 10  |-  ( -u
1..^ ( -u 1  +  1 ) )  =  ( -u 1..^ 0 )
5040, 49eqtr3i 2216 . . . . . . . . 9  |-  { -u
1 }  =  (
-u 1..^ 0 )
51 nn0uz 9627 . . . . . . . . 9  |-  NN0  =  ( ZZ>= `  0 )
5250, 51uneq12i 3311 . . . . . . . 8  |-  ( {
-u 1 }  u.  NN0 )  =  ( (
-u 1..^ 0 )  u.  ( ZZ>= `  0
) )
5352fneq2i 5349 . . . . . . 7  |-  ( `' ( { <. +oo ,  -u 1 >. }  u.  (  _I  |`  NN0 ) )  Fn  ( { -u
1 }  u.  NN0 ) 
<->  `' ( { <. +oo ,  -u 1 >. }  u.  (  _I  |`  NN0 )
)  Fn  ( (
-u 1..^ 0 )  u.  ( ZZ>= `  0
) ) )
5438, 53mpbi 145 . . . . . 6  |-  `' ( { <. +oo ,  -u
1 >. }  u.  (  _I  |`  NN0 ) )  Fn  ( ( -u
1..^ 0 )  u.  ( ZZ>= `  0 )
)
55 0z 9328 . . . . . . . . 9  |-  0  e.  ZZ
56 neg1rr 9088 . . . . . . . . . 10  |-  -u 1  e.  RR
57 0re 8019 . . . . . . . . . 10  |-  0  e.  RR
5856, 57, 23ltleii 8122 . . . . . . . . 9  |-  -u 1  <_  0
59 eluz2 9598 . . . . . . . . 9  |-  ( 0  e.  ( ZZ>= `  -u 1
)  <->  ( -u 1  e.  ZZ  /\  0  e.  ZZ  /\  -u 1  <_  0 ) )
603, 55, 58, 59mpbir3an 1181 . . . . . . . 8  |-  0  e.  ( ZZ>= `  -u 1 )
61 fzouzsplit 10246 . . . . . . . 8  |-  ( 0  e.  ( ZZ>= `  -u 1
)  ->  ( ZZ>= `  -u 1 )  =  ( ( -u 1..^ 0 )  u.  ( ZZ>= ` 
0 ) ) )
6260, 61ax-mp 5 . . . . . . 7  |-  ( ZZ>= `  -u 1 )  =  ( ( -u 1..^ 0 )  u.  ( ZZ>= ` 
0 ) )
6362fneq2i 5349 . . . . . 6  |-  ( `' ( { <. +oo ,  -u 1 >. }  u.  (  _I  |`  NN0 ) )  Fn  ( ZZ>= `  -u 1
)  <->  `' ( { <. +oo ,  -u 1 >. }  u.  (  _I  |`  NN0 )
)  Fn  ( (
-u 1..^ 0 )  u.  ( ZZ>= `  0
) ) )
6454, 63mpbir 146 . . . . 5  |-  `' ( { <. +oo ,  -u
1 >. }  u.  (  _I  |`  NN0 ) )  Fn  ( ZZ>= `  -u 1
)
6519, 64pm3.2i 272 . . . 4  |-  ( ( { <. +oo ,  -u
1 >. }  u.  (  _I  |`  NN0 ) )  Fn NN0*  /\  `' ( { <. +oo ,  -u 1 >. }  u.  (  _I  |`  NN0 ) )  Fn  ( ZZ>= `  -u 1 ) )
66 dff1o4 5508 . . . 4  |-  ( ( { <. +oo ,  -u
1 >. }  u.  (  _I  |`  NN0 ) ) :NN0*
-1-1-onto-> ( ZZ>= `  -u 1 )  <-> 
( ( { <. +oo ,  -u 1 >. }  u.  (  _I  |`  NN0 )
)  Fn NN0*  /\  `' ( { <. +oo ,  -u
1 >. }  u.  (  _I  |`  NN0 ) )  Fn  ( ZZ>= `  -u 1
) ) )
6765, 66mpbir 146 . . 3  |-  ( {
<. +oo ,  -u 1 >. }  u.  (  _I  |`  NN0 ) ) :NN0* -1-1-onto-> (
ZZ>= `  -u 1 )
68 nn0ex 9246 . . . . . 6  |-  NN0  e.  _V
692snex 4214 . . . . . 6  |-  { +oo }  e.  _V
7068, 69unex 4472 . . . . 5  |-  ( NN0 
u.  { +oo } )  e.  _V
7115, 70eqeltri 2266 . . . 4  |- NN0*  e.  _V
7271f1oen 6813 . . 3  |-  ( ( { <. +oo ,  -u
1 >. }  u.  (  _I  |`  NN0 ) ) :NN0*
-1-1-onto-> ( ZZ>= `  -u 1 )  -> NN0*  ~~  ( ZZ>= `  -u 1
) )
7367, 72ax-mp 5 . 2  |- NN0*  ~~  ( ZZ>=
`  -u 1 )
74 uzennn 10507 . . 3  |-  ( -u
1  e.  ZZ  ->  (
ZZ>= `  -u 1 )  ~~  NN )
753, 74ax-mp 5 . 2  |-  ( ZZ>= `  -u 1 )  ~~  NN
7673, 75entri 6840 1  |- NN0*  ~~  NN
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164    =/= wne 2364   _Vcvv 2760    u. cun 3151    i^i cin 3152   (/)c0 3446   {csn 3618   <.cop 3621   class class class wbr 4029    _I cid 4319   `'ccnv 4658    |` cres 4661    Fn wfn 5249   -1-1-onto->wf1o 5253   ` cfv 5254  (class class class)co 5918    ~~ cen 6792   CCcc 7870   0cc0 7872   1c1 7873    + caddc 7875   +oocpnf 8051    < clt 8054    <_ cle 8055    - cmin 8190   -ucneg 8191   NNcn 8982   NN0cn0 9240  NN0*cxnn0 9303   ZZcz 9317   ZZ>=cuz 9592  ..^cfzo 10208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-er 6587  df-en 6795  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-n0 9241  df-xnn0 9304  df-z 9318  df-uz 9593  df-fz 10075  df-fzo 10209
This theorem is referenced by:  nninfct  12178
  Copyright terms: Public domain W3C validator