ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xnn0nnen Unicode version

Theorem xnn0nnen 10529
Description: The set of extended nonnegative integers is equinumerous to the set of natural numbers. (Contributed by Jim Kingdon, 14-Jul-2025.)
Assertion
Ref Expression
xnn0nnen  |- NN0*  ~~  NN

Proof of Theorem xnn0nnen
StepHypRef Expression
1 fnresi 5375 . . . . . . . 8  |-  (  _I  |`  NN0 )  Fn  NN0
2 pnfex 8080 . . . . . . . . 9  |- +oo  e.  _V
3 neg1z 9358 . . . . . . . . . 10  |-  -u 1  e.  ZZ
43elexi 2775 . . . . . . . . 9  |-  -u 1  e.  _V
52, 4fnsn 5312 . . . . . . . 8  |-  { <. +oo ,  -u 1 >. }  Fn  { +oo }
61, 5pm3.2i 272 . . . . . . 7  |-  ( (  _I  |`  NN0 )  Fn 
NN0  /\  { <. +oo ,  -u 1 >. }  Fn  { +oo } )
7 disj 3499 . . . . . . . 8  |-  ( ( NN0  i^i  { +oo } )  =  (/)  <->  A. x  e.  NN0  -.  x  e. 
{ +oo } )
8 nn0nepnf 9320 . . . . . . . . 9  |-  ( x  e.  NN0  ->  x  =/= +oo )
9 nelsn 3657 . . . . . . . . 9  |-  ( x  =/= +oo  ->  -.  x  e.  { +oo } )
108, 9syl 14 . . . . . . . 8  |-  ( x  e.  NN0  ->  -.  x  e.  { +oo } )
117, 10mprgbir 2555 . . . . . . 7  |-  ( NN0 
i^i  { +oo } )  =  (/)
12 fnun 5364 . . . . . . 7  |-  ( ( ( (  _I  |`  NN0 )  Fn  NN0  /\  { <. +oo ,  -u 1 >. }  Fn  { +oo } )  /\  ( NN0  i^i  { +oo } )  =  (/) )  -> 
( (  _I  |`  NN0 )  u.  { <. +oo ,  -u
1 >. } )  Fn  ( NN0  u.  { +oo } ) )
136, 11, 12mp2an 426 . . . . . 6  |-  ( (  _I  |`  NN0 )  u. 
{ <. +oo ,  -u 1 >. } )  Fn  ( NN0  u.  { +oo }
)
14 uncom 3307 . . . . . . 7  |-  ( (  _I  |`  NN0 )  u. 
{ <. +oo ,  -u 1 >. } )  =  ( { <. +oo ,  -u
1 >. }  u.  (  _I  |`  NN0 ) )
15 df-xnn0 9313 . . . . . . . 8  |- NN0*  =  ( NN0  u.  { +oo } )
1615eqcomi 2200 . . . . . . 7  |-  ( NN0 
u.  { +oo } )  = NN0*
17 fneq12 5351 . . . . . . 7  |-  ( ( ( (  _I  |`  NN0 )  u.  { <. +oo ,  -u
1 >. } )  =  ( { <. +oo ,  -u 1 >. }  u.  (  _I  |`  NN0 ) )  /\  ( NN0  u.  { +oo } )  = NN0* )  ->  ( (
(  _I  |`  NN0 )  u.  { <. +oo ,  -u
1 >. } )  Fn  ( NN0  u.  { +oo } )  <->  ( { <. +oo ,  -u 1 >. }  u.  (  _I  |`  NN0 ) )  Fn NN0*
) )
1814, 16, 17mp2an 426 . . . . . 6  |-  ( ( (  _I  |`  NN0 )  u.  { <. +oo ,  -u
1 >. } )  Fn  ( NN0  u.  { +oo } )  <->  ( { <. +oo ,  -u 1 >. }  u.  (  _I  |`  NN0 ) )  Fn NN0*
)
1913, 18mpbi 145 . . . . 5  |-  ( {
<. +oo ,  -u 1 >. }  u.  (  _I  |`  NN0 ) )  Fn NN0*
204, 2fnsn 5312 . . . . . . . . . 10  |-  { <. -u 1 , +oo >. }  Fn  { -u 1 }
2120, 1pm3.2i 272 . . . . . . . . 9  |-  ( {
<. -u 1 , +oo >. }  Fn  { -u 1 }  /\  (  _I  |`  NN0 )  Fn  NN0 )
22 disj 3499 . . . . . . . . . 10  |-  ( ( { -u 1 }  i^i  NN0 )  =  (/)  <->  A. x  e.  { -u 1 }  -.  x  e.  NN0 )
23 neg1lt0 9098 . . . . . . . . . . . 12  |-  -u 1  <  0
24 nn0nlt0 9275 . . . . . . . . . . . 12  |-  ( -u
1  e.  NN0  ->  -.  -u 1  <  0
)
2523, 24mt2 641 . . . . . . . . . . 11  |-  -.  -u 1  e.  NN0
26 elsni 3640 . . . . . . . . . . . 12  |-  ( x  e.  { -u 1 }  ->  x  =  -u
1 )
2726eleq1d 2265 . . . . . . . . . . 11  |-  ( x  e.  { -u 1 }  ->  ( x  e. 
NN0 
<-> 
-u 1  e.  NN0 ) )
2825, 27mtbiri 676 . . . . . . . . . 10  |-  ( x  e.  { -u 1 }  ->  -.  x  e.  NN0 )
2922, 28mprgbir 2555 . . . . . . . . 9  |-  ( {
-u 1 }  i^i  NN0 )  =  (/)
30 fnun 5364 . . . . . . . . 9  |-  ( ( ( { <. -u 1 , +oo >. }  Fn  { -u 1 }  /\  (  _I  |`  NN0 )  Fn 
NN0 )  /\  ( { -u 1 }  i^i  NN0 )  =  (/) )  -> 
( { <. -u 1 , +oo >. }  u.  (  _I  |`  NN0 ) )  Fn  ( { -u
1 }  u.  NN0 ) )
3121, 29, 30mp2an 426 . . . . . . . 8  |-  ( {
<. -u 1 , +oo >. }  u.  (  _I  |` 
NN0 ) )  Fn  ( { -u 1 }  u.  NN0 )
32 cnvun 5075 . . . . . . . . . 10  |-  `' ( { <. +oo ,  -u
1 >. }  u.  (  _I  |`  NN0 ) )  =  ( `' { <. +oo ,  -u 1 >. }  u.  `' (  _I  |`  NN0 ) )
332, 4cnvsn 5152 . . . . . . . . . . 11  |-  `' { <. +oo ,  -u 1 >. }  =  { <. -u 1 , +oo >. }
34 cnvresid 5332 . . . . . . . . . . 11  |-  `' (  _I  |`  NN0 )  =  (  _I  |`  NN0 )
3533, 34uneq12i 3315 . . . . . . . . . 10  |-  ( `' { <. +oo ,  -u
1 >. }  u.  `' (  _I  |`  NN0 )
)  =  ( {
<. -u 1 , +oo >. }  u.  (  _I  |` 
NN0 ) )
3632, 35eqtri 2217 . . . . . . . . 9  |-  `' ( { <. +oo ,  -u
1 >. }  u.  (  _I  |`  NN0 ) )  =  ( { <. -u 1 , +oo >. }  u.  (  _I  |`  NN0 )
)
3736fneq1i 5352 . . . . . . . 8  |-  ( `' ( { <. +oo ,  -u 1 >. }  u.  (  _I  |`  NN0 ) )  Fn  ( { -u
1 }  u.  NN0 ) 
<->  ( { <. -u 1 , +oo >. }  u.  (  _I  |`  NN0 ) )  Fn  ( { -u
1 }  u.  NN0 ) )
3831, 37mpbir 146 . . . . . . 7  |-  `' ( { <. +oo ,  -u
1 >. }  u.  (  _I  |`  NN0 ) )  Fn  ( { -u
1 }  u.  NN0 )
39 fzosn 10281 . . . . . . . . . . 11  |-  ( -u
1  e.  ZZ  ->  (
-u 1..^ ( -u
1  +  1 ) )  =  { -u
1 } )
403, 39ax-mp 5 . . . . . . . . . 10  |-  ( -u
1..^ ( -u 1  +  1 ) )  =  { -u 1 }
41 ax-1cn 7972 . . . . . . . . . . . . 13  |-  1  e.  CC
4241, 41negsubdii 8311 . . . . . . . . . . . 12  |-  -u (
1  -  1 )  =  ( -u 1  +  1 )
43 1m1e0 9059 . . . . . . . . . . . . 13  |-  ( 1  -  1 )  =  0
4441, 41subcli 8302 . . . . . . . . . . . . . 14  |-  ( 1  -  1 )  e.  CC
45 negeq0 8280 . . . . . . . . . . . . . 14  |-  ( ( 1  -  1 )  e.  CC  ->  (
( 1  -  1 )  =  0  <->  -u (
1  -  1 )  =  0 ) )
4644, 45ax-mp 5 . . . . . . . . . . . . 13  |-  ( ( 1  -  1 )  =  0  <->  -u ( 1  -  1 )  =  0 )
4743, 46mpbi 145 . . . . . . . . . . . 12  |-  -u (
1  -  1 )  =  0
4842, 47eqtr3i 2219 . . . . . . . . . . 11  |-  ( -u
1  +  1 )  =  0
4948oveq2i 5933 . . . . . . . . . 10  |-  ( -u
1..^ ( -u 1  +  1 ) )  =  ( -u 1..^ 0 )
5040, 49eqtr3i 2219 . . . . . . . . 9  |-  { -u
1 }  =  (
-u 1..^ 0 )
51 nn0uz 9636 . . . . . . . . 9  |-  NN0  =  ( ZZ>= `  0 )
5250, 51uneq12i 3315 . . . . . . . 8  |-  ( {
-u 1 }  u.  NN0 )  =  ( (
-u 1..^ 0 )  u.  ( ZZ>= `  0
) )
5352fneq2i 5353 . . . . . . 7  |-  ( `' ( { <. +oo ,  -u 1 >. }  u.  (  _I  |`  NN0 ) )  Fn  ( { -u
1 }  u.  NN0 ) 
<->  `' ( { <. +oo ,  -u 1 >. }  u.  (  _I  |`  NN0 )
)  Fn  ( (
-u 1..^ 0 )  u.  ( ZZ>= `  0
) ) )
5438, 53mpbi 145 . . . . . 6  |-  `' ( { <. +oo ,  -u
1 >. }  u.  (  _I  |`  NN0 ) )  Fn  ( ( -u
1..^ 0 )  u.  ( ZZ>= `  0 )
)
55 0z 9337 . . . . . . . . 9  |-  0  e.  ZZ
56 neg1rr 9096 . . . . . . . . . 10  |-  -u 1  e.  RR
57 0re 8026 . . . . . . . . . 10  |-  0  e.  RR
5856, 57, 23ltleii 8129 . . . . . . . . 9  |-  -u 1  <_  0
59 eluz2 9607 . . . . . . . . 9  |-  ( 0  e.  ( ZZ>= `  -u 1
)  <->  ( -u 1  e.  ZZ  /\  0  e.  ZZ  /\  -u 1  <_  0 ) )
603, 55, 58, 59mpbir3an 1181 . . . . . . . 8  |-  0  e.  ( ZZ>= `  -u 1 )
61 fzouzsplit 10255 . . . . . . . 8  |-  ( 0  e.  ( ZZ>= `  -u 1
)  ->  ( ZZ>= `  -u 1 )  =  ( ( -u 1..^ 0 )  u.  ( ZZ>= ` 
0 ) ) )
6260, 61ax-mp 5 . . . . . . 7  |-  ( ZZ>= `  -u 1 )  =  ( ( -u 1..^ 0 )  u.  ( ZZ>= ` 
0 ) )
6362fneq2i 5353 . . . . . 6  |-  ( `' ( { <. +oo ,  -u 1 >. }  u.  (  _I  |`  NN0 ) )  Fn  ( ZZ>= `  -u 1
)  <->  `' ( { <. +oo ,  -u 1 >. }  u.  (  _I  |`  NN0 )
)  Fn  ( (
-u 1..^ 0 )  u.  ( ZZ>= `  0
) ) )
6454, 63mpbir 146 . . . . 5  |-  `' ( { <. +oo ,  -u
1 >. }  u.  (  _I  |`  NN0 ) )  Fn  ( ZZ>= `  -u 1
)
6519, 64pm3.2i 272 . . . 4  |-  ( ( { <. +oo ,  -u
1 >. }  u.  (  _I  |`  NN0 ) )  Fn NN0*  /\  `' ( { <. +oo ,  -u 1 >. }  u.  (  _I  |`  NN0 ) )  Fn  ( ZZ>= `  -u 1 ) )
66 dff1o4 5512 . . . 4  |-  ( ( { <. +oo ,  -u
1 >. }  u.  (  _I  |`  NN0 ) ) :NN0*
-1-1-onto-> ( ZZ>= `  -u 1 )  <-> 
( ( { <. +oo ,  -u 1 >. }  u.  (  _I  |`  NN0 )
)  Fn NN0*  /\  `' ( { <. +oo ,  -u
1 >. }  u.  (  _I  |`  NN0 ) )  Fn  ( ZZ>= `  -u 1
) ) )
6765, 66mpbir 146 . . 3  |-  ( {
<. +oo ,  -u 1 >. }  u.  (  _I  |`  NN0 ) ) :NN0* -1-1-onto-> (
ZZ>= `  -u 1 )
68 nn0ex 9255 . . . . . 6  |-  NN0  e.  _V
692snex 4218 . . . . . 6  |-  { +oo }  e.  _V
7068, 69unex 4476 . . . . 5  |-  ( NN0 
u.  { +oo } )  e.  _V
7115, 70eqeltri 2269 . . . 4  |- NN0*  e.  _V
7271f1oen 6818 . . 3  |-  ( ( { <. +oo ,  -u
1 >. }  u.  (  _I  |`  NN0 ) ) :NN0*
-1-1-onto-> ( ZZ>= `  -u 1 )  -> NN0*  ~~  ( ZZ>= `  -u 1
) )
7367, 72ax-mp 5 . 2  |- NN0*  ~~  ( ZZ>=
`  -u 1 )
74 uzennn 10528 . . 3  |-  ( -u
1  e.  ZZ  ->  (
ZZ>= `  -u 1 )  ~~  NN )
753, 74ax-mp 5 . 2  |-  ( ZZ>= `  -u 1 )  ~~  NN
7673, 75entri 6845 1  |- NN0*  ~~  NN
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167    =/= wne 2367   _Vcvv 2763    u. cun 3155    i^i cin 3156   (/)c0 3450   {csn 3622   <.cop 3625   class class class wbr 4033    _I cid 4323   `'ccnv 4662    |` cres 4665    Fn wfn 5253   -1-1-onto->wf1o 5257   ` cfv 5258  (class class class)co 5922    ~~ cen 6797   CCcc 7877   0cc0 7879   1c1 7880    + caddc 7882   +oocpnf 8058    < clt 8061    <_ cle 8062    - cmin 8197   -ucneg 8198   NNcn 8990   NN0cn0 9249  NN0*cxnn0 9312   ZZcz 9326   ZZ>=cuz 9601  ..^cfzo 10217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-er 6592  df-en 6800  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-inn 8991  df-n0 9250  df-xnn0 9313  df-z 9327  df-uz 9602  df-fz 10084  df-fzo 10218
This theorem is referenced by:  nninfct  12208
  Copyright terms: Public domain W3C validator