ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0nlt0 GIF version

Theorem nn0nlt0 8760
Description: A nonnegative integer is not less than zero. (Contributed by NM, 9-May-2004.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
nn0nlt0 (𝐴 ∈ ℕ0 → ¬ 𝐴 < 0)

Proof of Theorem nn0nlt0
StepHypRef Expression
1 nn0ge0 8759 . 2 (𝐴 ∈ ℕ0 → 0 ≤ 𝐴)
2 0re 7549 . . 3 0 ∈ ℝ
3 nn0re 8743 . . 3 (𝐴 ∈ ℕ0𝐴 ∈ ℝ)
4 lenlt 7622 . . 3 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 ≤ 𝐴 ↔ ¬ 𝐴 < 0))
52, 3, 4sylancr 406 . 2 (𝐴 ∈ ℕ0 → (0 ≤ 𝐴 ↔ ¬ 𝐴 < 0))
61, 5mpbid 146 1 (𝐴 ∈ ℕ0 → ¬ 𝐴 < 0)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 104  wcel 1439   class class class wbr 3851  cr 7410  0cc0 7411   < clt 7583  cle 7584  0cn0 8734
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3963  ax-pow 4015  ax-pr 4045  ax-un 4269  ax-setind 4366  ax-cnex 7497  ax-resscn 7498  ax-1cn 7499  ax-1re 7500  ax-icn 7501  ax-addcl 7502  ax-addrcl 7503  ax-mulcl 7504  ax-i2m1 7511  ax-0lt1 7512  ax-0id 7514  ax-rnegex 7515  ax-pre-ltirr 7518  ax-pre-ltwlin 7519  ax-pre-lttrn 7520  ax-pre-ltadd 7522
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-nel 2352  df-ral 2365  df-rex 2366  df-rab 2369  df-v 2622  df-dif 3002  df-un 3004  df-in 3006  df-ss 3013  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-int 3695  df-br 3852  df-opab 3906  df-xp 4458  df-cnv 4460  df-iota 4993  df-fv 5036  df-ov 5669  df-pnf 7585  df-mnf 7586  df-xr 7587  df-ltxr 7588  df-le 7589  df-inn 8484  df-n0 8735
This theorem is referenced by:  expnegap0  10024  hashfiv01gt1  10251  bezoutlemmain  11326
  Copyright terms: Public domain W3C validator