![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nn0nlt0 | GIF version |
Description: A nonnegative integer is not less than zero. (Contributed by NM, 9-May-2004.) (Revised by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
nn0nlt0 | ⊢ (𝐴 ∈ ℕ0 → ¬ 𝐴 < 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0ge0 8759 | . 2 ⊢ (𝐴 ∈ ℕ0 → 0 ≤ 𝐴) | |
2 | 0re 7549 | . . 3 ⊢ 0 ∈ ℝ | |
3 | nn0re 8743 | . . 3 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℝ) | |
4 | lenlt 7622 | . . 3 ⊢ ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 ≤ 𝐴 ↔ ¬ 𝐴 < 0)) | |
5 | 2, 3, 4 | sylancr 406 | . 2 ⊢ (𝐴 ∈ ℕ0 → (0 ≤ 𝐴 ↔ ¬ 𝐴 < 0)) |
6 | 1, 5 | mpbid 146 | 1 ⊢ (𝐴 ∈ ℕ0 → ¬ 𝐴 < 0) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 104 ∈ wcel 1439 class class class wbr 3851 ℝcr 7410 0cc0 7411 < clt 7583 ≤ cle 7584 ℕ0cn0 8734 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 580 ax-in2 581 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-13 1450 ax-14 1451 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 ax-sep 3963 ax-pow 4015 ax-pr 4045 ax-un 4269 ax-setind 4366 ax-cnex 7497 ax-resscn 7498 ax-1cn 7499 ax-1re 7500 ax-icn 7501 ax-addcl 7502 ax-addrcl 7503 ax-mulcl 7504 ax-i2m1 7511 ax-0lt1 7512 ax-0id 7514 ax-rnegex 7515 ax-pre-ltirr 7518 ax-pre-ltwlin 7519 ax-pre-lttrn 7520 ax-pre-ltadd 7522 |
This theorem depends on definitions: df-bi 116 df-3an 927 df-tru 1293 df-fal 1296 df-nf 1396 df-sb 1694 df-eu 1952 df-mo 1953 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-ne 2257 df-nel 2352 df-ral 2365 df-rex 2366 df-rab 2369 df-v 2622 df-dif 3002 df-un 3004 df-in 3006 df-ss 3013 df-pw 3435 df-sn 3456 df-pr 3457 df-op 3459 df-uni 3660 df-int 3695 df-br 3852 df-opab 3906 df-xp 4458 df-cnv 4460 df-iota 4993 df-fv 5036 df-ov 5669 df-pnf 7585 df-mnf 7586 df-xr 7587 df-ltxr 7588 df-le 7589 df-inn 8484 df-n0 8735 |
This theorem is referenced by: expnegap0 10024 hashfiv01gt1 10251 bezoutlemmain 11326 |
Copyright terms: Public domain | W3C validator |