ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfwlpoimlemdc Unicode version

Theorem nninfwlpoimlemdc 7278
Description: Lemma for nninfwlpoim 7280. (Contributed by Jim Kingdon, 8-Dec-2024.)
Hypotheses
Ref Expression
nninfwlpoimlemg.f  |-  ( ph  ->  F : om --> 2o )
nninfwlpoimlemg.g  |-  G  =  ( i  e.  om  |->  if ( E. x  e. 
suc  i ( F `
 x )  =  (/) ,  (/) ,  1o ) )
nninfwlpoilemdc.eq  |-  ( ph  ->  A. x  e.  A. y  e. DECID  x  =  y )
Assertion
Ref Expression
nninfwlpoimlemdc  |-  ( ph  -> DECID  A. n  e.  om  ( F `  n )  =  1o )
Distinct variable groups:    ph, n, x, i    n, G, x, i    y, G, x, i    n, F, x, i
Allowed substitution hints:    ph( y)    F( y)

Proof of Theorem nninfwlpoimlemdc
StepHypRef Expression
1 eqeq2 2214 . . . 4  |-  ( y  =  ( i  e. 
om  |->  1o )  -> 
( G  =  y  <-> 
G  =  ( i  e.  om  |->  1o ) ) )
21dcbid 839 . . 3  |-  ( y  =  ( i  e. 
om  |->  1o )  -> 
(DECID 
G  =  y  <-> DECID  G  =  (
i  e.  om  |->  1o ) ) )
3 eqeq1 2211 . . . . . 6  |-  ( x  =  G  ->  (
x  =  y  <->  G  =  y ) )
43dcbid 839 . . . . 5  |-  ( x  =  G  ->  (DECID  x  =  y  <-> DECID  G  =  y )
)
54ralbidv 2505 . . . 4  |-  ( x  =  G  ->  ( A. y  e. DECID  x  =  y  <->  A. y  e. DECID  G  =  y ) )
6 nninfwlpoilemdc.eq . . . 4  |-  ( ph  ->  A. x  e.  A. y  e. DECID  x  =  y )
7 nninfwlpoimlemg.f . . . . 5  |-  ( ph  ->  F : om --> 2o )
8 nninfwlpoimlemg.g . . . . 5  |-  G  =  ( i  e.  om  |->  if ( E. x  e. 
suc  i ( F `
 x )  =  (/) ,  (/) ,  1o ) )
97, 8nninfwlpoimlemg 7276 . . . 4  |-  ( ph  ->  G  e. )
105, 6, 9rspcdva 2881 . . 3  |-  ( ph  ->  A. y  e. DECID  G  =  y )
11 infnninf 7225 . . . 4  |-  ( i  e.  om  |->  1o )  e.
1211a1i 9 . . 3  |-  ( ph  ->  ( i  e.  om  |->  1o )  e. )
132, 10, 12rspcdva 2881 . 2  |-  ( ph  -> DECID  G  =  ( i  e. 
om  |->  1o ) )
147, 8nninfwlpoimlemginf 7277 . . 3  |-  ( ph  ->  ( G  =  ( i  e.  om  |->  1o )  <->  A. n  e.  om  ( F `  n )  =  1o ) )
1514dcbid 839 . 2  |-  ( ph  ->  (DECID  G  =  ( i  e.  om  |->  1o )  <-> DECID  A. n  e.  om  ( F `  n )  =  1o ) )
1613, 15mpbid 147 1  |-  ( ph  -> DECID  A. n  e.  om  ( F `  n )  =  1o )
Colors of variables: wff set class
Syntax hints:    -> wi 4  DECID wdc 835    = wceq 1372    e. wcel 2175   A.wral 2483   E.wrex 2484   (/)c0 3459   ifcif 3570    |-> cmpt 4104   suc csuc 4411   omcom 4637   -->wf 5266   ` cfv 5270   1oc1o 6494   2oc2o 6495  ℕxnninf 7220
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-iinf 4635
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4339  df-iord 4412  df-on 4414  df-suc 4417  df-iom 4638  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1o 6501  df-2o 6502  df-er 6619  df-map 6736  df-en 6827  df-fin 6829  df-nninf 7221
This theorem is referenced by:  nninfwlpoim  7280
  Copyright terms: Public domain W3C validator