ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfwlpoimlemdc Unicode version

Theorem nninfwlpoimlemdc 7177
Description: Lemma for nninfwlpoim 7178. (Contributed by Jim Kingdon, 8-Dec-2024.)
Hypotheses
Ref Expression
nninfwlpoimlemg.f  |-  ( ph  ->  F : om --> 2o )
nninfwlpoimlemg.g  |-  G  =  ( i  e.  om  |->  if ( E. x  e. 
suc  i ( F `
 x )  =  (/) ,  (/) ,  1o ) )
nninfwlpoilemdc.eq  |-  ( ph  ->  A. x  e.  A. y  e. DECID  x  =  y )
Assertion
Ref Expression
nninfwlpoimlemdc  |-  ( ph  -> DECID  A. n  e.  om  ( F `  n )  =  1o )
Distinct variable groups:    ph, n, x, i    n, G, x, i    y, G, x, i    n, F, x, i
Allowed substitution hints:    ph( y)    F( y)

Proof of Theorem nninfwlpoimlemdc
StepHypRef Expression
1 eqeq2 2187 . . . 4  |-  ( y  =  ( i  e. 
om  |->  1o )  -> 
( G  =  y  <-> 
G  =  ( i  e.  om  |->  1o ) ) )
21dcbid 838 . . 3  |-  ( y  =  ( i  e. 
om  |->  1o )  -> 
(DECID 
G  =  y  <-> DECID  G  =  (
i  e.  om  |->  1o ) ) )
3 eqeq1 2184 . . . . . 6  |-  ( x  =  G  ->  (
x  =  y  <->  G  =  y ) )
43dcbid 838 . . . . 5  |-  ( x  =  G  ->  (DECID  x  =  y  <-> DECID  G  =  y )
)
54ralbidv 2477 . . . 4  |-  ( x  =  G  ->  ( A. y  e. DECID  x  =  y  <->  A. y  e. DECID  G  =  y ) )
6 nninfwlpoilemdc.eq . . . 4  |-  ( ph  ->  A. x  e.  A. y  e. DECID  x  =  y )
7 nninfwlpoimlemg.f . . . . 5  |-  ( ph  ->  F : om --> 2o )
8 nninfwlpoimlemg.g . . . . 5  |-  G  =  ( i  e.  om  |->  if ( E. x  e. 
suc  i ( F `
 x )  =  (/) ,  (/) ,  1o ) )
97, 8nninfwlpoimlemg 7175 . . . 4  |-  ( ph  ->  G  e. )
105, 6, 9rspcdva 2848 . . 3  |-  ( ph  ->  A. y  e. DECID  G  =  y )
11 infnninf 7124 . . . 4  |-  ( i  e.  om  |->  1o )  e.
1211a1i 9 . . 3  |-  ( ph  ->  ( i  e.  om  |->  1o )  e. )
132, 10, 12rspcdva 2848 . 2  |-  ( ph  -> DECID  G  =  ( i  e. 
om  |->  1o ) )
147, 8nninfwlpoimlemginf 7176 . . 3  |-  ( ph  ->  ( G  =  ( i  e.  om  |->  1o )  <->  A. n  e.  om  ( F `  n )  =  1o ) )
1514dcbid 838 . 2  |-  ( ph  ->  (DECID  G  =  ( i  e.  om  |->  1o )  <-> DECID  A. n  e.  om  ( F `  n )  =  1o ) )
1613, 15mpbid 147 1  |-  ( ph  -> DECID  A. n  e.  om  ( F `  n )  =  1o )
Colors of variables: wff set class
Syntax hints:    -> wi 4  DECID wdc 834    = wceq 1353    e. wcel 2148   A.wral 2455   E.wrex 2456   (/)c0 3424   ifcif 3536    |-> cmpt 4066   suc csuc 4367   omcom 4591   -->wf 5214   ` cfv 5218   1oc1o 6412   2oc2o 6413  ℕxnninf 7120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-iord 4368  df-on 4370  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1o 6419  df-2o 6420  df-er 6537  df-map 6652  df-en 6743  df-fin 6745  df-nninf 7121
This theorem is referenced by:  nninfwlpoim  7178
  Copyright terms: Public domain W3C validator