ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfwlpoimlemdc Unicode version

Theorem nninfwlpoimlemdc 7305
Description: Lemma for nninfwlpoim 7307. (Contributed by Jim Kingdon, 8-Dec-2024.)
Hypotheses
Ref Expression
nninfwlpoimlemg.f  |-  ( ph  ->  F : om --> 2o )
nninfwlpoimlemg.g  |-  G  =  ( i  e.  om  |->  if ( E. x  e. 
suc  i ( F `
 x )  =  (/) ,  (/) ,  1o ) )
nninfwlpoilemdc.eq  |-  ( ph  ->  A. x  e.  A. y  e. DECID  x  =  y )
Assertion
Ref Expression
nninfwlpoimlemdc  |-  ( ph  -> DECID  A. n  e.  om  ( F `  n )  =  1o )
Distinct variable groups:    ph, n, x, i    n, G, x, i    y, G, x, i    n, F, x, i
Allowed substitution hints:    ph( y)    F( y)

Proof of Theorem nninfwlpoimlemdc
StepHypRef Expression
1 eqeq2 2217 . . . 4  |-  ( y  =  ( i  e. 
om  |->  1o )  -> 
( G  =  y  <-> 
G  =  ( i  e.  om  |->  1o ) ) )
21dcbid 840 . . 3  |-  ( y  =  ( i  e. 
om  |->  1o )  -> 
(DECID 
G  =  y  <-> DECID  G  =  (
i  e.  om  |->  1o ) ) )
3 eqeq1 2214 . . . . . 6  |-  ( x  =  G  ->  (
x  =  y  <->  G  =  y ) )
43dcbid 840 . . . . 5  |-  ( x  =  G  ->  (DECID  x  =  y  <-> DECID  G  =  y )
)
54ralbidv 2508 . . . 4  |-  ( x  =  G  ->  ( A. y  e. DECID  x  =  y  <->  A. y  e. DECID  G  =  y ) )
6 nninfwlpoilemdc.eq . . . 4  |-  ( ph  ->  A. x  e.  A. y  e. DECID  x  =  y )
7 nninfwlpoimlemg.f . . . . 5  |-  ( ph  ->  F : om --> 2o )
8 nninfwlpoimlemg.g . . . . 5  |-  G  =  ( i  e.  om  |->  if ( E. x  e. 
suc  i ( F `
 x )  =  (/) ,  (/) ,  1o ) )
97, 8nninfwlpoimlemg 7303 . . . 4  |-  ( ph  ->  G  e. )
105, 6, 9rspcdva 2889 . . 3  |-  ( ph  ->  A. y  e. DECID  G  =  y )
11 infnninf 7252 . . . 4  |-  ( i  e.  om  |->  1o )  e.
1211a1i 9 . . 3  |-  ( ph  ->  ( i  e.  om  |->  1o )  e. )
132, 10, 12rspcdva 2889 . 2  |-  ( ph  -> DECID  G  =  ( i  e. 
om  |->  1o ) )
147, 8nninfwlpoimlemginf 7304 . . 3  |-  ( ph  ->  ( G  =  ( i  e.  om  |->  1o )  <->  A. n  e.  om  ( F `  n )  =  1o ) )
1514dcbid 840 . 2  |-  ( ph  ->  (DECID  G  =  ( i  e.  om  |->  1o )  <-> DECID  A. n  e.  om  ( F `  n )  =  1o ) )
1613, 15mpbid 147 1  |-  ( ph  -> DECID  A. n  e.  om  ( F `  n )  =  1o )
Colors of variables: wff set class
Syntax hints:    -> wi 4  DECID wdc 836    = wceq 1373    e. wcel 2178   A.wral 2486   E.wrex 2487   (/)c0 3468   ifcif 3579    |-> cmpt 4121   suc csuc 4430   omcom 4656   -->wf 5286   ` cfv 5290   1oc1o 6518   2oc2o 6519  ℕxnninf 7247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1o 6525  df-2o 6526  df-er 6643  df-map 6760  df-en 6851  df-fin 6853  df-nninf 7248
This theorem is referenced by:  nninfwlpoim  7307
  Copyright terms: Public domain W3C validator