ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfwlpoimlemdc GIF version

Theorem nninfwlpoimlemdc 7153
Description: Lemma for nninfwlpoim 7154. (Contributed by Jim Kingdon, 8-Dec-2024.)
Hypotheses
Ref Expression
nninfwlpoimlemg.f (𝜑𝐹:ω⟶2o)
nninfwlpoimlemg.g 𝐺 = (𝑖 ∈ ω ↦ if(∃𝑥 ∈ suc 𝑖(𝐹𝑥) = ∅, ∅, 1o))
nninfwlpoilemdc.eq (𝜑 → ∀𝑥 ∈ ℕ𝑦 ∈ ℕ DECID 𝑥 = 𝑦)
Assertion
Ref Expression
nninfwlpoimlemdc (𝜑DECID𝑛 ∈ ω (𝐹𝑛) = 1o)
Distinct variable groups:   𝜑,𝑛,𝑥,𝑖   𝑛,𝐺,𝑥,𝑖   𝑦,𝐺,𝑥,𝑖   𝑛,𝐹,𝑥,𝑖
Allowed substitution hints:   𝜑(𝑦)   𝐹(𝑦)

Proof of Theorem nninfwlpoimlemdc
StepHypRef Expression
1 eqeq2 2180 . . . 4 (𝑦 = (𝑖 ∈ ω ↦ 1o) → (𝐺 = 𝑦𝐺 = (𝑖 ∈ ω ↦ 1o)))
21dcbid 833 . . 3 (𝑦 = (𝑖 ∈ ω ↦ 1o) → (DECID 𝐺 = 𝑦DECID 𝐺 = (𝑖 ∈ ω ↦ 1o)))
3 eqeq1 2177 . . . . . 6 (𝑥 = 𝐺 → (𝑥 = 𝑦𝐺 = 𝑦))
43dcbid 833 . . . . 5 (𝑥 = 𝐺 → (DECID 𝑥 = 𝑦DECID 𝐺 = 𝑦))
54ralbidv 2470 . . . 4 (𝑥 = 𝐺 → (∀𝑦 ∈ ℕ DECID 𝑥 = 𝑦 ↔ ∀𝑦 ∈ ℕ DECID 𝐺 = 𝑦))
6 nninfwlpoilemdc.eq . . . 4 (𝜑 → ∀𝑥 ∈ ℕ𝑦 ∈ ℕ DECID 𝑥 = 𝑦)
7 nninfwlpoimlemg.f . . . . 5 (𝜑𝐹:ω⟶2o)
8 nninfwlpoimlemg.g . . . . 5 𝐺 = (𝑖 ∈ ω ↦ if(∃𝑥 ∈ suc 𝑖(𝐹𝑥) = ∅, ∅, 1o))
97, 8nninfwlpoimlemg 7151 . . . 4 (𝜑𝐺 ∈ ℕ)
105, 6, 9rspcdva 2839 . . 3 (𝜑 → ∀𝑦 ∈ ℕ DECID 𝐺 = 𝑦)
11 infnninf 7100 . . . 4 (𝑖 ∈ ω ↦ 1o) ∈ ℕ
1211a1i 9 . . 3 (𝜑 → (𝑖 ∈ ω ↦ 1o) ∈ ℕ)
132, 10, 12rspcdva 2839 . 2 (𝜑DECID 𝐺 = (𝑖 ∈ ω ↦ 1o))
147, 8nninfwlpoimlemginf 7152 . . 3 (𝜑 → (𝐺 = (𝑖 ∈ ω ↦ 1o) ↔ ∀𝑛 ∈ ω (𝐹𝑛) = 1o))
1514dcbid 833 . 2 (𝜑 → (DECID 𝐺 = (𝑖 ∈ ω ↦ 1o) ↔ DECID𝑛 ∈ ω (𝐹𝑛) = 1o))
1613, 15mpbid 146 1 (𝜑DECID𝑛 ∈ ω (𝐹𝑛) = 1o)
Colors of variables: wff set class
Syntax hints:  wi 4  DECID wdc 829   = wceq 1348  wcel 2141  wral 2448  wrex 2449  c0 3414  ifcif 3526  cmpt 4050  suc csuc 4350  ωcom 4574  wf 5194  cfv 5198  1oc1o 6388  2oc2o 6389  xnninf 7096
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1o 6395  df-2o 6396  df-er 6513  df-map 6628  df-en 6719  df-fin 6721  df-nninf 7097
This theorem is referenced by:  nninfwlpoim  7154
  Copyright terms: Public domain W3C validator