| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nninfwlpoimlemdc | GIF version | ||
| Description: Lemma for nninfwlpoim 7293. (Contributed by Jim Kingdon, 8-Dec-2024.) |
| Ref | Expression |
|---|---|
| nninfwlpoimlemg.f | ⊢ (𝜑 → 𝐹:ω⟶2o) |
| nninfwlpoimlemg.g | ⊢ 𝐺 = (𝑖 ∈ ω ↦ if(∃𝑥 ∈ suc 𝑖(𝐹‘𝑥) = ∅, ∅, 1o)) |
| nninfwlpoilemdc.eq | ⊢ (𝜑 → ∀𝑥 ∈ ℕ∞ ∀𝑦 ∈ ℕ∞ DECID 𝑥 = 𝑦) |
| Ref | Expression |
|---|---|
| nninfwlpoimlemdc | ⊢ (𝜑 → DECID ∀𝑛 ∈ ω (𝐹‘𝑛) = 1o) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq2 2216 | . . . 4 ⊢ (𝑦 = (𝑖 ∈ ω ↦ 1o) → (𝐺 = 𝑦 ↔ 𝐺 = (𝑖 ∈ ω ↦ 1o))) | |
| 2 | 1 | dcbid 840 | . . 3 ⊢ (𝑦 = (𝑖 ∈ ω ↦ 1o) → (DECID 𝐺 = 𝑦 ↔ DECID 𝐺 = (𝑖 ∈ ω ↦ 1o))) |
| 3 | eqeq1 2213 | . . . . . 6 ⊢ (𝑥 = 𝐺 → (𝑥 = 𝑦 ↔ 𝐺 = 𝑦)) | |
| 4 | 3 | dcbid 840 | . . . . 5 ⊢ (𝑥 = 𝐺 → (DECID 𝑥 = 𝑦 ↔ DECID 𝐺 = 𝑦)) |
| 5 | 4 | ralbidv 2507 | . . . 4 ⊢ (𝑥 = 𝐺 → (∀𝑦 ∈ ℕ∞ DECID 𝑥 = 𝑦 ↔ ∀𝑦 ∈ ℕ∞ DECID 𝐺 = 𝑦)) |
| 6 | nninfwlpoilemdc.eq | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ ℕ∞ ∀𝑦 ∈ ℕ∞ DECID 𝑥 = 𝑦) | |
| 7 | nninfwlpoimlemg.f | . . . . 5 ⊢ (𝜑 → 𝐹:ω⟶2o) | |
| 8 | nninfwlpoimlemg.g | . . . . 5 ⊢ 𝐺 = (𝑖 ∈ ω ↦ if(∃𝑥 ∈ suc 𝑖(𝐹‘𝑥) = ∅, ∅, 1o)) | |
| 9 | 7, 8 | nninfwlpoimlemg 7289 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ ℕ∞) |
| 10 | 5, 6, 9 | rspcdva 2884 | . . 3 ⊢ (𝜑 → ∀𝑦 ∈ ℕ∞ DECID 𝐺 = 𝑦) |
| 11 | infnninf 7238 | . . . 4 ⊢ (𝑖 ∈ ω ↦ 1o) ∈ ℕ∞ | |
| 12 | 11 | a1i 9 | . . 3 ⊢ (𝜑 → (𝑖 ∈ ω ↦ 1o) ∈ ℕ∞) |
| 13 | 2, 10, 12 | rspcdva 2884 | . 2 ⊢ (𝜑 → DECID 𝐺 = (𝑖 ∈ ω ↦ 1o)) |
| 14 | 7, 8 | nninfwlpoimlemginf 7290 | . . 3 ⊢ (𝜑 → (𝐺 = (𝑖 ∈ ω ↦ 1o) ↔ ∀𝑛 ∈ ω (𝐹‘𝑛) = 1o)) |
| 15 | 14 | dcbid 840 | . 2 ⊢ (𝜑 → (DECID 𝐺 = (𝑖 ∈ ω ↦ 1o) ↔ DECID ∀𝑛 ∈ ω (𝐹‘𝑛) = 1o)) |
| 16 | 13, 15 | mpbid 147 | 1 ⊢ (𝜑 → DECID ∀𝑛 ∈ ω (𝐹‘𝑛) = 1o) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 DECID wdc 836 = wceq 1373 ∈ wcel 2177 ∀wral 2485 ∃wrex 2486 ∅c0 3462 ifcif 3573 ↦ cmpt 4110 suc csuc 4417 ωcom 4643 ⟶wf 5273 ‘cfv 5277 1oc1o 6505 2oc2o 6506 ℕ∞xnninf 7233 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4164 ax-sep 4167 ax-nul 4175 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 ax-iinf 4641 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3001 df-csb 3096 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-nul 3463 df-if 3574 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-int 3889 df-iun 3932 df-br 4049 df-opab 4111 df-mpt 4112 df-tr 4148 df-id 4345 df-iord 4418 df-on 4420 df-suc 4423 df-iom 4644 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-ima 4693 df-iota 5238 df-fun 5279 df-fn 5280 df-f 5281 df-f1 5282 df-fo 5283 df-f1o 5284 df-fv 5285 df-ov 5957 df-oprab 5958 df-mpo 5959 df-1o 6512 df-2o 6513 df-er 6630 df-map 6747 df-en 6838 df-fin 6840 df-nninf 7234 |
| This theorem is referenced by: nninfwlpoim 7293 |
| Copyright terms: Public domain | W3C validator |