| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nninfwlpoimlemdc | GIF version | ||
| Description: Lemma for nninfwlpoim 7253. (Contributed by Jim Kingdon, 8-Dec-2024.) |
| Ref | Expression |
|---|---|
| nninfwlpoimlemg.f | ⊢ (𝜑 → 𝐹:ω⟶2o) |
| nninfwlpoimlemg.g | ⊢ 𝐺 = (𝑖 ∈ ω ↦ if(∃𝑥 ∈ suc 𝑖(𝐹‘𝑥) = ∅, ∅, 1o)) |
| nninfwlpoilemdc.eq | ⊢ (𝜑 → ∀𝑥 ∈ ℕ∞ ∀𝑦 ∈ ℕ∞ DECID 𝑥 = 𝑦) |
| Ref | Expression |
|---|---|
| nninfwlpoimlemdc | ⊢ (𝜑 → DECID ∀𝑛 ∈ ω (𝐹‘𝑛) = 1o) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq2 2206 | . . . 4 ⊢ (𝑦 = (𝑖 ∈ ω ↦ 1o) → (𝐺 = 𝑦 ↔ 𝐺 = (𝑖 ∈ ω ↦ 1o))) | |
| 2 | 1 | dcbid 839 | . . 3 ⊢ (𝑦 = (𝑖 ∈ ω ↦ 1o) → (DECID 𝐺 = 𝑦 ↔ DECID 𝐺 = (𝑖 ∈ ω ↦ 1o))) |
| 3 | eqeq1 2203 | . . . . . 6 ⊢ (𝑥 = 𝐺 → (𝑥 = 𝑦 ↔ 𝐺 = 𝑦)) | |
| 4 | 3 | dcbid 839 | . . . . 5 ⊢ (𝑥 = 𝐺 → (DECID 𝑥 = 𝑦 ↔ DECID 𝐺 = 𝑦)) |
| 5 | 4 | ralbidv 2497 | . . . 4 ⊢ (𝑥 = 𝐺 → (∀𝑦 ∈ ℕ∞ DECID 𝑥 = 𝑦 ↔ ∀𝑦 ∈ ℕ∞ DECID 𝐺 = 𝑦)) |
| 6 | nninfwlpoilemdc.eq | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ ℕ∞ ∀𝑦 ∈ ℕ∞ DECID 𝑥 = 𝑦) | |
| 7 | nninfwlpoimlemg.f | . . . . 5 ⊢ (𝜑 → 𝐹:ω⟶2o) | |
| 8 | nninfwlpoimlemg.g | . . . . 5 ⊢ 𝐺 = (𝑖 ∈ ω ↦ if(∃𝑥 ∈ suc 𝑖(𝐹‘𝑥) = ∅, ∅, 1o)) | |
| 9 | 7, 8 | nninfwlpoimlemg 7250 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ ℕ∞) |
| 10 | 5, 6, 9 | rspcdva 2873 | . . 3 ⊢ (𝜑 → ∀𝑦 ∈ ℕ∞ DECID 𝐺 = 𝑦) |
| 11 | infnninf 7199 | . . . 4 ⊢ (𝑖 ∈ ω ↦ 1o) ∈ ℕ∞ | |
| 12 | 11 | a1i 9 | . . 3 ⊢ (𝜑 → (𝑖 ∈ ω ↦ 1o) ∈ ℕ∞) |
| 13 | 2, 10, 12 | rspcdva 2873 | . 2 ⊢ (𝜑 → DECID 𝐺 = (𝑖 ∈ ω ↦ 1o)) |
| 14 | 7, 8 | nninfwlpoimlemginf 7251 | . . 3 ⊢ (𝜑 → (𝐺 = (𝑖 ∈ ω ↦ 1o) ↔ ∀𝑛 ∈ ω (𝐹‘𝑛) = 1o)) |
| 15 | 14 | dcbid 839 | . 2 ⊢ (𝜑 → (DECID 𝐺 = (𝑖 ∈ ω ↦ 1o) ↔ DECID ∀𝑛 ∈ ω (𝐹‘𝑛) = 1o)) |
| 16 | 13, 15 | mpbid 147 | 1 ⊢ (𝜑 → DECID ∀𝑛 ∈ ω (𝐹‘𝑛) = 1o) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 DECID wdc 835 = wceq 1364 ∈ wcel 2167 ∀wral 2475 ∃wrex 2476 ∅c0 3451 ifcif 3562 ↦ cmpt 4095 suc csuc 4401 ωcom 4627 ⟶wf 5255 ‘cfv 5259 1oc1o 6476 2oc2o 6477 ℕ∞xnninf 7194 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-iord 4402 df-on 4404 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1o 6483 df-2o 6484 df-er 6601 df-map 6718 df-en 6809 df-fin 6811 df-nninf 7195 |
| This theorem is referenced by: nninfwlpoim 7253 |
| Copyright terms: Public domain | W3C validator |