ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfwlpoimlemdc GIF version

Theorem nninfwlpoimlemdc 7252
Description: Lemma for nninfwlpoim 7253. (Contributed by Jim Kingdon, 8-Dec-2024.)
Hypotheses
Ref Expression
nninfwlpoimlemg.f (𝜑𝐹:ω⟶2o)
nninfwlpoimlemg.g 𝐺 = (𝑖 ∈ ω ↦ if(∃𝑥 ∈ suc 𝑖(𝐹𝑥) = ∅, ∅, 1o))
nninfwlpoilemdc.eq (𝜑 → ∀𝑥 ∈ ℕ𝑦 ∈ ℕ DECID 𝑥 = 𝑦)
Assertion
Ref Expression
nninfwlpoimlemdc (𝜑DECID𝑛 ∈ ω (𝐹𝑛) = 1o)
Distinct variable groups:   𝜑,𝑛,𝑥,𝑖   𝑛,𝐺,𝑥,𝑖   𝑦,𝐺,𝑥,𝑖   𝑛,𝐹,𝑥,𝑖
Allowed substitution hints:   𝜑(𝑦)   𝐹(𝑦)

Proof of Theorem nninfwlpoimlemdc
StepHypRef Expression
1 eqeq2 2206 . . . 4 (𝑦 = (𝑖 ∈ ω ↦ 1o) → (𝐺 = 𝑦𝐺 = (𝑖 ∈ ω ↦ 1o)))
21dcbid 839 . . 3 (𝑦 = (𝑖 ∈ ω ↦ 1o) → (DECID 𝐺 = 𝑦DECID 𝐺 = (𝑖 ∈ ω ↦ 1o)))
3 eqeq1 2203 . . . . . 6 (𝑥 = 𝐺 → (𝑥 = 𝑦𝐺 = 𝑦))
43dcbid 839 . . . . 5 (𝑥 = 𝐺 → (DECID 𝑥 = 𝑦DECID 𝐺 = 𝑦))
54ralbidv 2497 . . . 4 (𝑥 = 𝐺 → (∀𝑦 ∈ ℕ DECID 𝑥 = 𝑦 ↔ ∀𝑦 ∈ ℕ DECID 𝐺 = 𝑦))
6 nninfwlpoilemdc.eq . . . 4 (𝜑 → ∀𝑥 ∈ ℕ𝑦 ∈ ℕ DECID 𝑥 = 𝑦)
7 nninfwlpoimlemg.f . . . . 5 (𝜑𝐹:ω⟶2o)
8 nninfwlpoimlemg.g . . . . 5 𝐺 = (𝑖 ∈ ω ↦ if(∃𝑥 ∈ suc 𝑖(𝐹𝑥) = ∅, ∅, 1o))
97, 8nninfwlpoimlemg 7250 . . . 4 (𝜑𝐺 ∈ ℕ)
105, 6, 9rspcdva 2873 . . 3 (𝜑 → ∀𝑦 ∈ ℕ DECID 𝐺 = 𝑦)
11 infnninf 7199 . . . 4 (𝑖 ∈ ω ↦ 1o) ∈ ℕ
1211a1i 9 . . 3 (𝜑 → (𝑖 ∈ ω ↦ 1o) ∈ ℕ)
132, 10, 12rspcdva 2873 . 2 (𝜑DECID 𝐺 = (𝑖 ∈ ω ↦ 1o))
147, 8nninfwlpoimlemginf 7251 . . 3 (𝜑 → (𝐺 = (𝑖 ∈ ω ↦ 1o) ↔ ∀𝑛 ∈ ω (𝐹𝑛) = 1o))
1514dcbid 839 . 2 (𝜑 → (DECID 𝐺 = (𝑖 ∈ ω ↦ 1o) ↔ DECID𝑛 ∈ ω (𝐹𝑛) = 1o))
1613, 15mpbid 147 1 (𝜑DECID𝑛 ∈ ω (𝐹𝑛) = 1o)
Colors of variables: wff set class
Syntax hints:  wi 4  DECID wdc 835   = wceq 1364  wcel 2167  wral 2475  wrex 2476  c0 3451  ifcif 3562  cmpt 4095  suc csuc 4401  ωcom 4627  wf 5255  cfv 5259  1oc1o 6476  2oc2o 6477  xnninf 7194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1o 6483  df-2o 6484  df-er 6601  df-map 6718  df-en 6809  df-fin 6811  df-nninf 7195
This theorem is referenced by:  nninfwlpoim  7253
  Copyright terms: Public domain W3C validator