ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfwlpor Unicode version

Theorem nninfwlpor 7175
Description: The Weak Limited Principle of Omniscience (WLPO) implies that equality for ℕ is decidable. (Contributed by Jim Kingdon, 7-Dec-2024.)
Assertion
Ref Expression
nninfwlpor  |-  ( om  e. WOmni  ->  A. x  e.  A. y  e. DECID  x  =  y )
Distinct variable group:    x, y

Proof of Theorem nninfwlpor
Dummy variables  i  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nninff 7124 . . . 4  |-  ( x  e.  ->  x : om --> 2o )
21ad2antrl 490 . . 3  |-  ( ( om  e. WOmni  /\  (
x  e.  /\  y  e. ) )  ->  x : om --> 2o )
3 nninff 7124 . . . 4  |-  ( y  e.  ->  y : om --> 2o )
43ad2antll 491 . . 3  |-  ( ( om  e. WOmni  /\  (
x  e.  /\  y  e. ) )  ->  y : om --> 2o )
5 fveq2 5517 . . . . . 6  |-  ( j  =  i  ->  (
x `  j )  =  ( x `  i ) )
6 fveq2 5517 . . . . . 6  |-  ( j  =  i  ->  (
y `  j )  =  ( y `  i ) )
75, 6eqeq12d 2192 . . . . 5  |-  ( j  =  i  ->  (
( x `  j
)  =  ( y `
 j )  <->  ( x `  i )  =  ( y `  i ) ) )
87ifbid 3557 . . . 4  |-  ( j  =  i  ->  if ( ( x `  j )  =  ( y `  j ) ,  1o ,  (/) )  =  if (
( x `  i
)  =  ( y `
 i ) ,  1o ,  (/) ) )
98cbvmptv 4101 . . 3  |-  ( j  e.  om  |->  if ( ( x `  j
)  =  ( y `
 j ) ,  1o ,  (/) ) )  =  ( i  e. 
om  |->  if ( ( x `  i )  =  ( y `  i ) ,  1o ,  (/) ) )
10 simpl 109 . . 3  |-  ( ( om  e. WOmni  /\  (
x  e.  /\  y  e. ) )  ->  om  e. WOmni )
112, 4, 9, 10nninfwlporlem 7174 . 2  |-  ( ( om  e. WOmni  /\  (
x  e.  /\  y  e. ) )  -> DECID  x  =  y
)
1211ralrimivva 2559 1  |-  ( om  e. WOmni  ->  A. x  e.  A. y  e. DECID  x  =  y )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104  DECID wdc 834    = wceq 1353    e. wcel 2148   A.wral 2455   (/)c0 3424   ifcif 3536    |-> cmpt 4066   omcom 4591   -->wf 5214   ` cfv 5218   1oc1o 6413   2oc2o 6414  ℕxnninf 7121  WOmnicwomni 7164
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-iord 4368  df-on 4370  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fv 5226  df-ov 5881  df-oprab 5882  df-mpo 5883  df-1o 6420  df-2o 6421  df-map 6653  df-nninf 7122  df-womni 7165
This theorem is referenced by:  nninfwlpo  7180
  Copyright terms: Public domain W3C validator