Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nninfwlpor | Unicode version |
Description: The Weak Limited Principle of Omniscience (WLPO) implies that equality for ℕ∞ is decidable. (Contributed by Jim Kingdon, 7-Dec-2024.) |
Ref | Expression |
---|---|
nninfwlpor | WOmni ℕ∞ ℕ∞ DECID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nninff 7103 | . . . 4 ℕ∞ | |
2 | 1 | ad2antrl 488 | . . 3 WOmni ℕ∞ ℕ∞ |
3 | nninff 7103 | . . . 4 ℕ∞ | |
4 | 3 | ad2antll 489 | . . 3 WOmni ℕ∞ ℕ∞ |
5 | fveq2 5499 | . . . . . 6 | |
6 | fveq2 5499 | . . . . . 6 | |
7 | 5, 6 | eqeq12d 2186 | . . . . 5 |
8 | 7 | ifbid 3548 | . . . 4 |
9 | 8 | cbvmptv 4086 | . . 3 |
10 | simpl 108 | . . 3 WOmni ℕ∞ ℕ∞ WOmni | |
11 | 2, 4, 9, 10 | nninfwlporlem 7153 | . 2 WOmni ℕ∞ ℕ∞ DECID |
12 | 11 | ralrimivva 2553 | 1 WOmni ℕ∞ ℕ∞ DECID |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 DECID wdc 830 wceq 1349 wcel 2142 wral 2449 c0 3415 cif 3527 cmpt 4051 com 4575 wf 5196 cfv 5200 c1o 6392 c2o 6393 ℕ∞xnninf 7100 WOmnicwomni 7143 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 610 ax-in2 611 ax-io 705 ax-5 1441 ax-7 1442 ax-gen 1443 ax-ie1 1487 ax-ie2 1488 ax-8 1498 ax-10 1499 ax-11 1500 ax-i12 1501 ax-bndl 1503 ax-4 1504 ax-17 1520 ax-i9 1524 ax-ial 1528 ax-i5r 1529 ax-13 2144 ax-14 2145 ax-ext 2153 ax-sep 4108 ax-nul 4116 ax-pow 4161 ax-pr 4195 ax-un 4419 ax-setind 4522 ax-iinf 4573 |
This theorem depends on definitions: df-bi 116 df-dc 831 df-3or 975 df-3an 976 df-tru 1352 df-fal 1355 df-nf 1455 df-sb 1757 df-eu 2023 df-mo 2024 df-clab 2158 df-cleq 2164 df-clel 2167 df-nfc 2302 df-ne 2342 df-ral 2454 df-rex 2455 df-rab 2458 df-v 2733 df-sbc 2957 df-csb 3051 df-dif 3124 df-un 3126 df-in 3128 df-ss 3135 df-nul 3416 df-if 3528 df-pw 3569 df-sn 3590 df-pr 3591 df-op 3593 df-uni 3798 df-int 3833 df-br 3991 df-opab 4052 df-mpt 4053 df-tr 4089 df-id 4279 df-iord 4352 df-on 4354 df-suc 4357 df-iom 4576 df-xp 4618 df-rel 4619 df-cnv 4620 df-co 4621 df-dm 4622 df-rn 4623 df-res 4624 df-ima 4625 df-iota 5162 df-fun 5202 df-fn 5203 df-f 5204 df-fv 5208 df-ov 5860 df-oprab 5861 df-mpo 5862 df-1o 6399 df-2o 6400 df-map 6632 df-nninf 7101 df-womni 7144 |
This theorem is referenced by: nninfwlpo 7159 |
Copyright terms: Public domain | W3C validator |