ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfwlpor Unicode version

Theorem nninfwlpor 7278
Description: The Weak Limited Principle of Omniscience (WLPO) implies that equality for ℕ is decidable. (Contributed by Jim Kingdon, 7-Dec-2024.)
Assertion
Ref Expression
nninfwlpor  |-  ( om  e. WOmni  ->  A. x  e.  A. y  e. DECID  x  =  y )
Distinct variable group:    x, y

Proof of Theorem nninfwlpor
Dummy variables  i  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nninff 7226 . . . 4  |-  ( x  e.  ->  x : om --> 2o )
21ad2antrl 490 . . 3  |-  ( ( om  e. WOmni  /\  (
x  e.  /\  y  e. ) )  ->  x : om --> 2o )
3 nninff 7226 . . . 4  |-  ( y  e.  ->  y : om --> 2o )
43ad2antll 491 . . 3  |-  ( ( om  e. WOmni  /\  (
x  e.  /\  y  e. ) )  ->  y : om --> 2o )
5 fveq2 5578 . . . . . 6  |-  ( j  =  i  ->  (
x `  j )  =  ( x `  i ) )
6 fveq2 5578 . . . . . 6  |-  ( j  =  i  ->  (
y `  j )  =  ( y `  i ) )
75, 6eqeq12d 2220 . . . . 5  |-  ( j  =  i  ->  (
( x `  j
)  =  ( y `
 j )  <->  ( x `  i )  =  ( y `  i ) ) )
87ifbid 3592 . . . 4  |-  ( j  =  i  ->  if ( ( x `  j )  =  ( y `  j ) ,  1o ,  (/) )  =  if (
( x `  i
)  =  ( y `
 i ) ,  1o ,  (/) ) )
98cbvmptv 4141 . . 3  |-  ( j  e.  om  |->  if ( ( x `  j
)  =  ( y `
 j ) ,  1o ,  (/) ) )  =  ( i  e. 
om  |->  if ( ( x `  i )  =  ( y `  i ) ,  1o ,  (/) ) )
10 simpl 109 . . 3  |-  ( ( om  e. WOmni  /\  (
x  e.  /\  y  e. ) )  ->  om  e. WOmni )
112, 4, 9, 10nninfwlporlem 7277 . 2  |-  ( ( om  e. WOmni  /\  (
x  e.  /\  y  e. ) )  -> DECID  x  =  y
)
1211ralrimivva 2588 1  |-  ( om  e. WOmni  ->  A. x  e.  A. y  e. DECID  x  =  y )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104  DECID wdc 836    = wceq 1373    e. wcel 2176   A.wral 2484   (/)c0 3460   ifcif 3571    |-> cmpt 4106   omcom 4639   -->wf 5268   ` cfv 5272   1oc1o 6497   2oc2o 6498  ℕxnninf 7223  WOmnicwomni 7267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-iinf 4637
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4046  df-opab 4107  df-mpt 4108  df-tr 4144  df-id 4341  df-iord 4414  df-on 4416  df-suc 4419  df-iom 4640  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-fv 5280  df-ov 5949  df-oprab 5950  df-mpo 5951  df-1o 6504  df-2o 6505  df-map 6739  df-nninf 7224  df-womni 7268
This theorem is referenced by:  nninfwlpo  7285
  Copyright terms: Public domain W3C validator