ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfwlpor GIF version

Theorem nninfwlpor 7278
Description: The Weak Limited Principle of Omniscience (WLPO) implies that equality for is decidable. (Contributed by Jim Kingdon, 7-Dec-2024.)
Assertion
Ref Expression
nninfwlpor (ω ∈ WOmni → ∀𝑥 ∈ ℕ𝑦 ∈ ℕ DECID 𝑥 = 𝑦)
Distinct variable group:   𝑥,𝑦

Proof of Theorem nninfwlpor
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nninff 7226 . . . 4 (𝑥 ∈ ℕ𝑥:ω⟶2o)
21ad2antrl 490 . . 3 ((ω ∈ WOmni ∧ (𝑥 ∈ ℕ𝑦 ∈ ℕ)) → 𝑥:ω⟶2o)
3 nninff 7226 . . . 4 (𝑦 ∈ ℕ𝑦:ω⟶2o)
43ad2antll 491 . . 3 ((ω ∈ WOmni ∧ (𝑥 ∈ ℕ𝑦 ∈ ℕ)) → 𝑦:ω⟶2o)
5 fveq2 5578 . . . . . 6 (𝑗 = 𝑖 → (𝑥𝑗) = (𝑥𝑖))
6 fveq2 5578 . . . . . 6 (𝑗 = 𝑖 → (𝑦𝑗) = (𝑦𝑖))
75, 6eqeq12d 2220 . . . . 5 (𝑗 = 𝑖 → ((𝑥𝑗) = (𝑦𝑗) ↔ (𝑥𝑖) = (𝑦𝑖)))
87ifbid 3592 . . . 4 (𝑗 = 𝑖 → if((𝑥𝑗) = (𝑦𝑗), 1o, ∅) = if((𝑥𝑖) = (𝑦𝑖), 1o, ∅))
98cbvmptv 4141 . . 3 (𝑗 ∈ ω ↦ if((𝑥𝑗) = (𝑦𝑗), 1o, ∅)) = (𝑖 ∈ ω ↦ if((𝑥𝑖) = (𝑦𝑖), 1o, ∅))
10 simpl 109 . . 3 ((ω ∈ WOmni ∧ (𝑥 ∈ ℕ𝑦 ∈ ℕ)) → ω ∈ WOmni)
112, 4, 9, 10nninfwlporlem 7277 . 2 ((ω ∈ WOmni ∧ (𝑥 ∈ ℕ𝑦 ∈ ℕ)) → DECID 𝑥 = 𝑦)
1211ralrimivva 2588 1 (ω ∈ WOmni → ∀𝑥 ∈ ℕ𝑦 ∈ ℕ DECID 𝑥 = 𝑦)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  DECID wdc 836   = wceq 1373  wcel 2176  wral 2484  c0 3460  ifcif 3571  cmpt 4106  ωcom 4639  wf 5268  cfv 5272  1oc1o 6497  2oc2o 6498  xnninf 7223  WOmnicwomni 7267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-iinf 4637
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4046  df-opab 4107  df-mpt 4108  df-tr 4144  df-id 4341  df-iord 4414  df-on 4416  df-suc 4419  df-iom 4640  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-fv 5280  df-ov 5949  df-oprab 5950  df-mpo 5951  df-1o 6504  df-2o 6505  df-map 6739  df-nninf 7224  df-womni 7268
This theorem is referenced by:  nninfwlpo  7285
  Copyright terms: Public domain W3C validator