![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nninfwlpor | GIF version |
Description: The Weak Limited Principle of Omniscience (WLPO) implies that equality for ℕ∞ is decidable. (Contributed by Jim Kingdon, 7-Dec-2024.) |
Ref | Expression |
---|---|
nninfwlpor | ⊢ (ω ∈ WOmni → ∀𝑥 ∈ ℕ∞ ∀𝑦 ∈ ℕ∞ DECID 𝑥 = 𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nninff 7118 | . . . 4 ⊢ (𝑥 ∈ ℕ∞ → 𝑥:ω⟶2o) | |
2 | 1 | ad2antrl 490 | . . 3 ⊢ ((ω ∈ WOmni ∧ (𝑥 ∈ ℕ∞ ∧ 𝑦 ∈ ℕ∞)) → 𝑥:ω⟶2o) |
3 | nninff 7118 | . . . 4 ⊢ (𝑦 ∈ ℕ∞ → 𝑦:ω⟶2o) | |
4 | 3 | ad2antll 491 | . . 3 ⊢ ((ω ∈ WOmni ∧ (𝑥 ∈ ℕ∞ ∧ 𝑦 ∈ ℕ∞)) → 𝑦:ω⟶2o) |
5 | fveq2 5514 | . . . . . 6 ⊢ (𝑗 = 𝑖 → (𝑥‘𝑗) = (𝑥‘𝑖)) | |
6 | fveq2 5514 | . . . . . 6 ⊢ (𝑗 = 𝑖 → (𝑦‘𝑗) = (𝑦‘𝑖)) | |
7 | 5, 6 | eqeq12d 2192 | . . . . 5 ⊢ (𝑗 = 𝑖 → ((𝑥‘𝑗) = (𝑦‘𝑗) ↔ (𝑥‘𝑖) = (𝑦‘𝑖))) |
8 | 7 | ifbid 3555 | . . . 4 ⊢ (𝑗 = 𝑖 → if((𝑥‘𝑗) = (𝑦‘𝑗), 1o, ∅) = if((𝑥‘𝑖) = (𝑦‘𝑖), 1o, ∅)) |
9 | 8 | cbvmptv 4098 | . . 3 ⊢ (𝑗 ∈ ω ↦ if((𝑥‘𝑗) = (𝑦‘𝑗), 1o, ∅)) = (𝑖 ∈ ω ↦ if((𝑥‘𝑖) = (𝑦‘𝑖), 1o, ∅)) |
10 | simpl 109 | . . 3 ⊢ ((ω ∈ WOmni ∧ (𝑥 ∈ ℕ∞ ∧ 𝑦 ∈ ℕ∞)) → ω ∈ WOmni) | |
11 | 2, 4, 9, 10 | nninfwlporlem 7168 | . 2 ⊢ ((ω ∈ WOmni ∧ (𝑥 ∈ ℕ∞ ∧ 𝑦 ∈ ℕ∞)) → DECID 𝑥 = 𝑦) |
12 | 11 | ralrimivva 2559 | 1 ⊢ (ω ∈ WOmni → ∀𝑥 ∈ ℕ∞ ∀𝑦 ∈ ℕ∞ DECID 𝑥 = 𝑦) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 DECID wdc 834 = wceq 1353 ∈ wcel 2148 ∀wral 2455 ∅c0 3422 ifcif 3534 ↦ cmpt 4063 ωcom 4588 ⟶wf 5211 ‘cfv 5215 1oc1o 6407 2oc2o 6408 ℕ∞xnninf 7115 WOmnicwomni 7158 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4120 ax-nul 4128 ax-pow 4173 ax-pr 4208 ax-un 4432 ax-setind 4535 ax-iinf 4586 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2739 df-sbc 2963 df-csb 3058 df-dif 3131 df-un 3133 df-in 3135 df-ss 3142 df-nul 3423 df-if 3535 df-pw 3577 df-sn 3598 df-pr 3599 df-op 3601 df-uni 3810 df-int 3845 df-br 4003 df-opab 4064 df-mpt 4065 df-tr 4101 df-id 4292 df-iord 4365 df-on 4367 df-suc 4370 df-iom 4589 df-xp 4631 df-rel 4632 df-cnv 4633 df-co 4634 df-dm 4635 df-rn 4636 df-res 4637 df-ima 4638 df-iota 5177 df-fun 5217 df-fn 5218 df-f 5219 df-fv 5223 df-ov 5875 df-oprab 5876 df-mpo 5877 df-1o 6414 df-2o 6415 df-map 6647 df-nninf 7116 df-womni 7159 |
This theorem is referenced by: nninfwlpo 7174 |
Copyright terms: Public domain | W3C validator |