ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfwlpor GIF version

Theorem nninfwlpor 7341
Description: The Weak Limited Principle of Omniscience (WLPO) implies that equality for is decidable. (Contributed by Jim Kingdon, 7-Dec-2024.)
Assertion
Ref Expression
nninfwlpor (ω ∈ WOmni → ∀𝑥 ∈ ℕ𝑦 ∈ ℕ DECID 𝑥 = 𝑦)
Distinct variable group:   𝑥,𝑦

Proof of Theorem nninfwlpor
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nninff 7289 . . . 4 (𝑥 ∈ ℕ𝑥:ω⟶2o)
21ad2antrl 490 . . 3 ((ω ∈ WOmni ∧ (𝑥 ∈ ℕ𝑦 ∈ ℕ)) → 𝑥:ω⟶2o)
3 nninff 7289 . . . 4 (𝑦 ∈ ℕ𝑦:ω⟶2o)
43ad2antll 491 . . 3 ((ω ∈ WOmni ∧ (𝑥 ∈ ℕ𝑦 ∈ ℕ)) → 𝑦:ω⟶2o)
5 fveq2 5627 . . . . . 6 (𝑗 = 𝑖 → (𝑥𝑗) = (𝑥𝑖))
6 fveq2 5627 . . . . . 6 (𝑗 = 𝑖 → (𝑦𝑗) = (𝑦𝑖))
75, 6eqeq12d 2244 . . . . 5 (𝑗 = 𝑖 → ((𝑥𝑗) = (𝑦𝑗) ↔ (𝑥𝑖) = (𝑦𝑖)))
87ifbid 3624 . . . 4 (𝑗 = 𝑖 → if((𝑥𝑗) = (𝑦𝑗), 1o, ∅) = if((𝑥𝑖) = (𝑦𝑖), 1o, ∅))
98cbvmptv 4180 . . 3 (𝑗 ∈ ω ↦ if((𝑥𝑗) = (𝑦𝑗), 1o, ∅)) = (𝑖 ∈ ω ↦ if((𝑥𝑖) = (𝑦𝑖), 1o, ∅))
10 simpl 109 . . 3 ((ω ∈ WOmni ∧ (𝑥 ∈ ℕ𝑦 ∈ ℕ)) → ω ∈ WOmni)
112, 4, 9, 10nninfwlporlem 7340 . 2 ((ω ∈ WOmni ∧ (𝑥 ∈ ℕ𝑦 ∈ ℕ)) → DECID 𝑥 = 𝑦)
1211ralrimivva 2612 1 (ω ∈ WOmni → ∀𝑥 ∈ ℕ𝑦 ∈ ℕ DECID 𝑥 = 𝑦)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  DECID wdc 839   = wceq 1395  wcel 2200  wral 2508  c0 3491  ifcif 3602  cmpt 4145  ωcom 4682  wf 5314  cfv 5318  1oc1o 6555  2oc2o 6556  xnninf 7286  WOmnicwomni 7330
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1o 6562  df-2o 6563  df-map 6797  df-nninf 7287  df-womni 7331
This theorem is referenced by:  nninfwlpo  7348
  Copyright terms: Public domain W3C validator