| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nna0 | Unicode version | ||
| Description: Addition with zero. Theorem 4I(A1) of [Enderton] p. 79. (Contributed by NM, 20-Sep-1995.) |
| Ref | Expression |
|---|---|
| nna0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnon 4659 |
. 2
| |
| 2 | oa0 6545 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4160 ax-sep 4163 ax-nul 4171 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-iinf 4637 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4046 df-opab 4107 df-mpt 4108 df-tr 4144 df-id 4341 df-iord 4414 df-on 4416 df-suc 4419 df-iom 4640 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-f1 5277 df-fo 5278 df-f1o 5279 df-fv 5280 df-ov 5949 df-oprab 5950 df-mpo 5951 df-recs 6393 df-irdg 6458 df-oadd 6508 |
| This theorem is referenced by: nnacl 6568 nnacom 6572 nnaass 6573 nndi 6574 nnmsucr 6576 nnaordi 6596 nnmordi 6604 nnaordex 6616 nnawordex 6617 addnidpig 7451 1lt2pi 7455 archnqq 7532 prarloclemarch2 7534 nq0a0 7572 prarloclem3 7612 omgadd 10949 hashunlem 10951 |
| Copyright terms: Public domain | W3C validator |