ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nna0 Unicode version

Theorem nna0 6620
Description: Addition with zero. Theorem 4I(A1) of [Enderton] p. 79. (Contributed by NM, 20-Sep-1995.)
Assertion
Ref Expression
nna0  |-  ( A  e.  om  ->  ( A  +o  (/) )  =  A )

Proof of Theorem nna0
StepHypRef Expression
1 nnon 4702 . 2  |-  ( A  e.  om  ->  A  e.  On )
2 oa0 6603 . 2  |-  ( A  e.  On  ->  ( A  +o  (/) )  =  A )
31, 2syl 14 1  |-  ( A  e.  om  ->  ( A  +o  (/) )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    e. wcel 2200   (/)c0 3491   Oncon0 4454   omcom 4682  (class class class)co 6001    +o coa 6559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-recs 6451  df-irdg 6516  df-oadd 6566
This theorem is referenced by:  nnacl  6626  nnacom  6630  nnaass  6631  nndi  6632  nnmsucr  6634  nnaordi  6654  nnmordi  6662  nnaordex  6674  nnawordex  6675  addnidpig  7523  1lt2pi  7527  archnqq  7604  prarloclemarch2  7606  nq0a0  7644  prarloclem3  7684  omgadd  11024  hashunlem  11026
  Copyright terms: Public domain W3C validator