ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nna0 Unicode version

Theorem nna0 6562
Description: Addition with zero. Theorem 4I(A1) of [Enderton] p. 79. (Contributed by NM, 20-Sep-1995.)
Assertion
Ref Expression
nna0  |-  ( A  e.  om  ->  ( A  +o  (/) )  =  A )

Proof of Theorem nna0
StepHypRef Expression
1 nnon 4659 . 2  |-  ( A  e.  om  ->  A  e.  On )
2 oa0 6545 . 2  |-  ( A  e.  On  ->  ( A  +o  (/) )  =  A )
31, 2syl 14 1  |-  ( A  e.  om  ->  ( A  +o  (/) )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2176   (/)c0 3460   Oncon0 4411   omcom 4639  (class class class)co 5946    +o coa 6501
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-iinf 4637
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-tr 4144  df-id 4341  df-iord 4414  df-on 4416  df-suc 4419  df-iom 4640  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-ov 5949  df-oprab 5950  df-mpo 5951  df-recs 6393  df-irdg 6458  df-oadd 6508
This theorem is referenced by:  nnacl  6568  nnacom  6572  nnaass  6573  nndi  6574  nnmsucr  6576  nnaordi  6596  nnmordi  6604  nnaordex  6616  nnawordex  6617  addnidpig  7451  1lt2pi  7455  archnqq  7532  prarloclemarch2  7534  nq0a0  7572  prarloclem3  7612  omgadd  10949  hashunlem  10951
  Copyright terms: Public domain W3C validator