ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nna0 Unicode version

Theorem nna0 6166
Description: Addition with zero. Theorem 4I(A1) of [Enderton] p. 79. (Contributed by NM, 20-Sep-1995.)
Assertion
Ref Expression
nna0  |-  ( A  e.  om  ->  ( A  +o  (/) )  =  A )

Proof of Theorem nna0
StepHypRef Expression
1 nnon 4386 . 2  |-  ( A  e.  om  ->  A  e.  On )
2 oa0 6149 . 2  |-  ( A  e.  On  ->  ( A  +o  (/) )  =  A )
31, 2syl 14 1  |-  ( A  e.  om  ->  ( A  +o  (/) )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1285    e. wcel 1434   (/)c0 3269   Oncon0 4153   omcom 4367  (class class class)co 5590    +o coa 6109
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3919  ax-sep 3922  ax-nul 3930  ax-pow 3974  ax-pr 3999  ax-un 4223  ax-setind 4315  ax-iinf 4365
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2614  df-sbc 2827  df-csb 2920  df-dif 2986  df-un 2988  df-in 2990  df-ss 2997  df-nul 3270  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-uni 3628  df-int 3663  df-iun 3706  df-br 3812  df-opab 3866  df-mpt 3867  df-tr 3902  df-id 4083  df-iord 4156  df-on 4158  df-suc 4161  df-iom 4368  df-xp 4406  df-rel 4407  df-cnv 4408  df-co 4409  df-dm 4410  df-rn 4411  df-res 4412  df-ima 4413  df-iota 4933  df-fun 4970  df-fn 4971  df-f 4972  df-f1 4973  df-fo 4974  df-f1o 4975  df-fv 4976  df-ov 5593  df-oprab 5594  df-mpt2 5595  df-recs 6001  df-irdg 6066  df-oadd 6116
This theorem is referenced by:  nnacl  6172  nnacom  6176  nnaass  6177  nndi  6178  nnmsucr  6180  nnaordi  6196  nnmordi  6204  nnaordex  6215  nnawordex  6216  addnidpig  6797  1lt2pi  6801  archnqq  6878  prarloclemarch2  6880  nq0a0  6918  prarloclem3  6958  omgadd  10044  hashunlem  10046
  Copyright terms: Public domain W3C validator