ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnppipi Unicode version

Theorem nnppipi 7305
Description: A natural number plus a positive integer is a positive integer. (Contributed by Jim Kingdon, 10-Nov-2019.)
Assertion
Ref Expression
nnppipi  |-  ( ( A  e.  om  /\  B  e.  N. )  ->  ( A  +o  B
)  e.  N. )

Proof of Theorem nnppipi
StepHypRef Expression
1 pinn 7271 . . 3  |-  ( B  e.  N.  ->  B  e.  om )
2 nnacl 6459 . . 3  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  +o  B
)  e.  om )
31, 2sylan2 284 . 2  |-  ( ( A  e.  om  /\  B  e.  N. )  ->  ( A  +o  B
)  e.  om )
4 nnaword2 6493 . . . . 5  |-  ( ( B  e.  om  /\  A  e.  om )  ->  B  C_  ( A  +o  B ) )
51, 4sylan 281 . . . 4  |-  ( ( B  e.  N.  /\  A  e.  om )  ->  B  C_  ( A  +o  B ) )
65ancoms 266 . . 3  |-  ( ( A  e.  om  /\  B  e.  N. )  ->  B  C_  ( A  +o  B ) )
7 elni2 7276 . . . . 5  |-  ( B  e.  N.  <->  ( B  e.  om  /\  (/)  e.  B
) )
87simprbi 273 . . . 4  |-  ( B  e.  N.  ->  (/)  e.  B
)
98adantl 275 . . 3  |-  ( ( A  e.  om  /\  B  e.  N. )  -> 
(/)  e.  B )
106, 9sseldd 3148 . 2  |-  ( ( A  e.  om  /\  B  e.  N. )  -> 
(/)  e.  ( A  +o  B ) )
11 elni2 7276 . 2  |-  ( ( A  +o  B )  e.  N.  <->  ( ( A  +o  B )  e. 
om  /\  (/)  e.  ( A  +o  B ) ) )
123, 10, 11sylanbrc 415 1  |-  ( ( A  e.  om  /\  B  e.  N. )  ->  ( A  +o  B
)  e.  N. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 2141    C_ wss 3121   (/)c0 3414   omcom 4574  (class class class)co 5853    +o coa 6392   N.cnpi 7234
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-oadd 6399  df-ni 7266
This theorem is referenced by:  nqpnq0nq  7415  prarloclemlt  7455  prarloclemlo  7456  prarloclemcalc  7464
  Copyright terms: Public domain W3C validator