ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnppipi GIF version

Theorem nnppipi 7518
Description: A natural number plus a positive integer is a positive integer. (Contributed by Jim Kingdon, 10-Nov-2019.)
Assertion
Ref Expression
nnppipi ((𝐴 ∈ ω ∧ 𝐵N) → (𝐴 +o 𝐵) ∈ N)

Proof of Theorem nnppipi
StepHypRef Expression
1 pinn 7484 . . 3 (𝐵N𝐵 ∈ ω)
2 nnacl 6616 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 +o 𝐵) ∈ ω)
31, 2sylan2 286 . 2 ((𝐴 ∈ ω ∧ 𝐵N) → (𝐴 +o 𝐵) ∈ ω)
4 nnaword2 6650 . . . . 5 ((𝐵 ∈ ω ∧ 𝐴 ∈ ω) → 𝐵 ⊆ (𝐴 +o 𝐵))
51, 4sylan 283 . . . 4 ((𝐵N𝐴 ∈ ω) → 𝐵 ⊆ (𝐴 +o 𝐵))
65ancoms 268 . . 3 ((𝐴 ∈ ω ∧ 𝐵N) → 𝐵 ⊆ (𝐴 +o 𝐵))
7 elni2 7489 . . . . 5 (𝐵N ↔ (𝐵 ∈ ω ∧ ∅ ∈ 𝐵))
87simprbi 275 . . . 4 (𝐵N → ∅ ∈ 𝐵)
98adantl 277 . . 3 ((𝐴 ∈ ω ∧ 𝐵N) → ∅ ∈ 𝐵)
106, 9sseldd 3225 . 2 ((𝐴 ∈ ω ∧ 𝐵N) → ∅ ∈ (𝐴 +o 𝐵))
11 elni2 7489 . 2 ((𝐴 +o 𝐵) ∈ N ↔ ((𝐴 +o 𝐵) ∈ ω ∧ ∅ ∈ (𝐴 +o 𝐵)))
123, 10, 11sylanbrc 417 1 ((𝐴 ∈ ω ∧ 𝐵N) → (𝐴 +o 𝐵) ∈ N)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2200  wss 3197  c0 3491  ωcom 4679  (class class class)co 5994   +o coa 6549  Ncnpi 7447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-iinf 4677
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4381  df-iord 4454  df-on 4456  df-suc 4459  df-iom 4680  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-recs 6441  df-irdg 6506  df-oadd 6556  df-ni 7479
This theorem is referenced by:  nqpnq0nq  7628  prarloclemlt  7668  prarloclemlo  7669  prarloclemcalc  7677
  Copyright terms: Public domain W3C validator