Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nnppipi | GIF version |
Description: A natural number plus a positive integer is a positive integer. (Contributed by Jim Kingdon, 10-Nov-2019.) |
Ref | Expression |
---|---|
nnppipi | ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ N) → (𝐴 +o 𝐵) ∈ N) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pinn 7258 | . . 3 ⊢ (𝐵 ∈ N → 𝐵 ∈ ω) | |
2 | nnacl 6456 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 +o 𝐵) ∈ ω) | |
3 | 1, 2 | sylan2 284 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ N) → (𝐴 +o 𝐵) ∈ ω) |
4 | nnaword2 6490 | . . . . 5 ⊢ ((𝐵 ∈ ω ∧ 𝐴 ∈ ω) → 𝐵 ⊆ (𝐴 +o 𝐵)) | |
5 | 1, 4 | sylan 281 | . . . 4 ⊢ ((𝐵 ∈ N ∧ 𝐴 ∈ ω) → 𝐵 ⊆ (𝐴 +o 𝐵)) |
6 | 5 | ancoms 266 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ N) → 𝐵 ⊆ (𝐴 +o 𝐵)) |
7 | elni2 7263 | . . . . 5 ⊢ (𝐵 ∈ N ↔ (𝐵 ∈ ω ∧ ∅ ∈ 𝐵)) | |
8 | 7 | simprbi 273 | . . . 4 ⊢ (𝐵 ∈ N → ∅ ∈ 𝐵) |
9 | 8 | adantl 275 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ N) → ∅ ∈ 𝐵) |
10 | 6, 9 | sseldd 3148 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ N) → ∅ ∈ (𝐴 +o 𝐵)) |
11 | elni2 7263 | . 2 ⊢ ((𝐴 +o 𝐵) ∈ N ↔ ((𝐴 +o 𝐵) ∈ ω ∧ ∅ ∈ (𝐴 +o 𝐵))) | |
12 | 3, 10, 11 | sylanbrc 415 | 1 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ N) → (𝐴 +o 𝐵) ∈ N) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 2141 ⊆ wss 3121 ∅c0 3414 ωcom 4572 (class class class)co 5850 +o coa 6389 Ncnpi 7221 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4102 ax-sep 4105 ax-nul 4113 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-iinf 4570 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-iun 3873 df-br 3988 df-opab 4049 df-mpt 4050 df-tr 4086 df-id 4276 df-iord 4349 df-on 4351 df-suc 4354 df-iom 4573 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-f1 5201 df-fo 5202 df-f1o 5203 df-fv 5204 df-ov 5853 df-oprab 5854 df-mpo 5855 df-1st 6116 df-2nd 6117 df-recs 6281 df-irdg 6346 df-oadd 6396 df-ni 7253 |
This theorem is referenced by: nqpnq0nq 7402 prarloclemlt 7442 prarloclemlo 7443 prarloclemcalc 7451 |
Copyright terms: Public domain | W3C validator |