![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nnppipi | GIF version |
Description: A natural number plus a positive integer is a positive integer. (Contributed by Jim Kingdon, 10-Nov-2019.) |
Ref | Expression |
---|---|
nnppipi | ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ N) → (𝐴 +𝑜 𝐵) ∈ N) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pinn 6771 | . . 3 ⊢ (𝐵 ∈ N → 𝐵 ∈ ω) | |
2 | nnacl 6173 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 +𝑜 𝐵) ∈ ω) | |
3 | 1, 2 | sylan2 280 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ N) → (𝐴 +𝑜 𝐵) ∈ ω) |
4 | nnaword2 6203 | . . . . 5 ⊢ ((𝐵 ∈ ω ∧ 𝐴 ∈ ω) → 𝐵 ⊆ (𝐴 +𝑜 𝐵)) | |
5 | 1, 4 | sylan 277 | . . . 4 ⊢ ((𝐵 ∈ N ∧ 𝐴 ∈ ω) → 𝐵 ⊆ (𝐴 +𝑜 𝐵)) |
6 | 5 | ancoms 264 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ N) → 𝐵 ⊆ (𝐴 +𝑜 𝐵)) |
7 | elni2 6776 | . . . . 5 ⊢ (𝐵 ∈ N ↔ (𝐵 ∈ ω ∧ ∅ ∈ 𝐵)) | |
8 | 7 | simprbi 269 | . . . 4 ⊢ (𝐵 ∈ N → ∅ ∈ 𝐵) |
9 | 8 | adantl 271 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ N) → ∅ ∈ 𝐵) |
10 | 6, 9 | sseldd 3011 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ N) → ∅ ∈ (𝐴 +𝑜 𝐵)) |
11 | elni2 6776 | . 2 ⊢ ((𝐴 +𝑜 𝐵) ∈ N ↔ ((𝐴 +𝑜 𝐵) ∈ ω ∧ ∅ ∈ (𝐴 +𝑜 𝐵))) | |
12 | 3, 10, 11 | sylanbrc 408 | 1 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ N) → (𝐴 +𝑜 𝐵) ∈ N) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ∈ wcel 1434 ⊆ wss 2984 ∅c0 3269 ωcom 4368 (class class class)co 5591 +𝑜 coa 6110 Ncnpi 6734 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-coll 3919 ax-sep 3922 ax-nul 3930 ax-pow 3974 ax-pr 4000 ax-un 4224 ax-setind 4316 ax-iinf 4366 |
This theorem depends on definitions: df-bi 115 df-dc 777 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1688 df-eu 1946 df-mo 1947 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ne 2250 df-ral 2358 df-rex 2359 df-reu 2360 df-rab 2362 df-v 2614 df-sbc 2827 df-csb 2920 df-dif 2986 df-un 2988 df-in 2990 df-ss 2997 df-nul 3270 df-pw 3408 df-sn 3428 df-pr 3429 df-op 3431 df-uni 3628 df-int 3663 df-iun 3706 df-br 3812 df-opab 3866 df-mpt 3867 df-tr 3902 df-id 4084 df-iord 4157 df-on 4159 df-suc 4162 df-iom 4369 df-xp 4407 df-rel 4408 df-cnv 4409 df-co 4410 df-dm 4411 df-rn 4412 df-res 4413 df-ima 4414 df-iota 4934 df-fun 4971 df-fn 4972 df-f 4973 df-f1 4974 df-fo 4975 df-f1o 4976 df-fv 4977 df-ov 5594 df-oprab 5595 df-mpt2 5596 df-1st 5846 df-2nd 5847 df-recs 6002 df-irdg 6067 df-oadd 6117 df-ni 6766 |
This theorem is referenced by: nqpnq0nq 6915 prarloclemlt 6955 prarloclemlo 6956 prarloclemcalc 6964 |
Copyright terms: Public domain | W3C validator |