ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnsinds Unicode version

Theorem nnsinds 10209
Description: Strong (or "total") induction principle over the naturals. (Contributed by Scott Fenton, 16-May-2014.)
Hypotheses
Ref Expression
nnsinds.1  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
nnsinds.2  |-  ( x  =  N  ->  ( ph 
<->  ch ) )
nnsinds.3  |-  ( x  e.  NN  ->  ( A. y  e.  (
1 ... ( x  - 
1 ) ) ps 
->  ph ) )
Assertion
Ref Expression
nnsinds  |-  ( N  e.  NN  ->  ch )
Distinct variable groups:    ch, x    x, N    ph, y    ps, x    x, y
Allowed substitution hints:    ph( x)    ps( y)    ch( y)    N( y)

Proof of Theorem nnsinds
StepHypRef Expression
1 elnnuz 9355 . 2  |-  ( N  e.  NN  <->  N  e.  ( ZZ>= `  1 )
)
2 nnsinds.1 . . 3  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
3 nnsinds.2 . . 3  |-  ( x  =  N  ->  ( ph 
<->  ch ) )
4 elnnuz 9355 . . . 4  |-  ( x  e.  NN  <->  x  e.  ( ZZ>= `  1 )
)
5 nnsinds.3 . . . 4  |-  ( x  e.  NN  ->  ( A. y  e.  (
1 ... ( x  - 
1 ) ) ps 
->  ph ) )
64, 5sylbir 134 . . 3  |-  ( x  e.  ( ZZ>= `  1
)  ->  ( A. y  e.  ( 1 ... ( x  - 
1 ) ) ps 
->  ph ) )
72, 3, 6uzsinds 10208 . 2  |-  ( N  e.  ( ZZ>= `  1
)  ->  ch )
81, 7sylbi 120 1  |-  ( N  e.  NN  ->  ch )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1331    e. wcel 1480   A.wral 2414   ` cfv 5118  (class class class)co 5767   1c1 7614    - cmin 7926   NNcn 8713   ZZ>=cuz 9319   ...cfz 9783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-addcom 7713  ax-addass 7715  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-0id 7721  ax-rnegex 7722  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-br 3925  df-opab 3985  df-mpt 3986  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-inn 8714  df-n0 8971  df-z 9048  df-uz 9320  df-fz 9784
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator