Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elnnuz | Unicode version |
Description: A positive integer expressed as a member of an upper set of integers. (Contributed by NM, 6-Jun-2006.) |
Ref | Expression |
---|---|
elnnuz |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnuz 9468 | . 2 | |
2 | 1 | eleq2i 2224 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 104 wcel 2128 cfv 5169 c1 7727 cn 8827 cuz 9433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4135 ax-pr 4169 ax-un 4393 ax-setind 4495 ax-cnex 7817 ax-resscn 7818 ax-1cn 7819 ax-1re 7820 ax-icn 7821 ax-addcl 7822 ax-addrcl 7823 ax-mulcl 7824 ax-addcom 7826 ax-addass 7828 ax-distr 7830 ax-i2m1 7831 ax-0lt1 7832 ax-0id 7834 ax-rnegex 7835 ax-cnre 7837 ax-pre-ltirr 7838 ax-pre-ltwlin 7839 ax-pre-lttrn 7840 ax-pre-ltadd 7842 |
This theorem depends on definitions: df-bi 116 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-br 3966 df-opab 4026 df-mpt 4027 df-id 4253 df-xp 4591 df-rel 4592 df-cnv 4593 df-co 4594 df-dm 4595 df-iota 5134 df-fun 5171 df-fv 5177 df-riota 5777 df-ov 5824 df-oprab 5825 df-mpo 5826 df-pnf 7908 df-mnf 7909 df-xr 7910 df-ltxr 7911 df-le 7912 df-sub 8042 df-neg 8043 df-inn 8828 df-z 9162 df-uz 9434 |
This theorem is referenced by: eluzge3nn 9477 uznnssnn 9482 uzsubsubfz1 9943 elfz1end 9950 fznn 9984 fzo1fzo0n0 10075 elfzonlteqm1 10102 rebtwn2z 10147 nnsinds 10335 exp3vallem 10413 exp1 10418 expp1 10419 facp1 10597 faclbnd 10608 bcn1 10625 resqrexlemf1 10901 resqrexlemfp1 10902 summodclem3 11270 summodclem2a 11271 fsum3 11277 fsumcl2lem 11288 fsumadd 11296 sumsnf 11299 fsummulc2 11338 trireciplem 11390 geo2lim 11406 geoisum1 11409 geoisum1c 11410 cvgratnnlemnexp 11414 cvgratz 11422 prodmodclem3 11465 prodmodclem2a 11466 fprodseq 11473 fprodmul 11481 prodsnf 11482 fprodfac 11505 dvdsfac 11744 gcdsupex 11832 gcdsupcl 11833 prmind2 11988 eulerthlemrprm 12092 eulerthlema 12093 structfn 12180 cvgcmp2nlemabs 13574 trilpolemisumle 13580 nconstwlpolem0 13604 |
Copyright terms: Public domain | W3C validator |