| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elnnuz | Unicode version | ||
| Description: A positive integer expressed as a member of an upper set of integers. (Contributed by NM, 6-Jun-2006.) |
| Ref | Expression |
|---|---|
| elnnuz |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnuz 9719 |
. 2
| |
| 2 | 1 | eleq2i 2274 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-0id 8068 ax-rnegex 8069 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-iota 5251 df-fun 5292 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-inn 9072 df-z 9408 df-uz 9684 |
| This theorem is referenced by: eluzge3nn 9728 uznnssnn 9733 elnndc 9768 uzsubsubfz1 10205 elfz1end 10212 fznn 10246 fzo1fzo0n0 10344 elfzonlteqm1 10376 rebtwn2z 10434 nnsinds 10627 exp3vallem 10722 exp1 10727 expp1 10728 facp1 10912 faclbnd 10923 bcn1 10940 resqrexlemf1 11434 resqrexlemfp1 11435 summodclem3 11806 summodclem2a 11807 fsum3 11813 fsumcl2lem 11824 fsumadd 11832 sumsnf 11835 fsummulc2 11874 trireciplem 11926 geo2lim 11942 geoisum1 11945 geoisum1c 11946 cvgratnnlemnexp 11950 cvgratz 11958 prodmodclem3 12001 prodmodclem2a 12002 fprodseq 12009 fprodmul 12017 prodsnf 12018 fprodfac 12041 dvdsfac 12286 gcdsupex 12393 gcdsupcl 12394 prmind2 12557 eulerthlemrprm 12666 eulerthlema 12667 pcmpt 12781 prmunb 12800 nninfdclemp1 12936 structfn 12966 mulgnngsum 13578 mulg1 13580 mulgnndir 13602 lgsval2lem 15602 lgsdir 15627 lgsdilem2 15628 lgsdi 15629 lgsne0 15630 2lgslem1a 15680 2sqlem10 15717 cvgcmp2nlemabs 16173 trilpolemisumle 16179 nconstwlpolem0 16204 |
| Copyright terms: Public domain | W3C validator |