| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elnnuz | Unicode version | ||
| Description: A positive integer expressed as a member of an upper set of integers. (Contributed by NM, 6-Jun-2006.) |
| Ref | Expression |
|---|---|
| elnnuz |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnuz 9654 |
. 2
| |
| 2 | 1 | eleq2i 2263 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-0id 8004 ax-rnegex 8005 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-ltadd 8012 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-inn 9008 df-z 9344 df-uz 9619 |
| This theorem is referenced by: eluzge3nn 9663 uznnssnn 9668 elnndc 9703 uzsubsubfz1 10140 elfz1end 10147 fznn 10181 fzo1fzo0n0 10276 elfzonlteqm1 10303 rebtwn2z 10361 nnsinds 10554 exp3vallem 10649 exp1 10654 expp1 10655 facp1 10839 faclbnd 10850 bcn1 10867 resqrexlemf1 11190 resqrexlemfp1 11191 summodclem3 11562 summodclem2a 11563 fsum3 11569 fsumcl2lem 11580 fsumadd 11588 sumsnf 11591 fsummulc2 11630 trireciplem 11682 geo2lim 11698 geoisum1 11701 geoisum1c 11702 cvgratnnlemnexp 11706 cvgratz 11714 prodmodclem3 11757 prodmodclem2a 11758 fprodseq 11765 fprodmul 11773 prodsnf 11774 fprodfac 11797 dvdsfac 12042 gcdsupex 12149 gcdsupcl 12150 prmind2 12313 eulerthlemrprm 12422 eulerthlema 12423 pcmpt 12537 prmunb 12556 nninfdclemp1 12692 structfn 12722 mulgnngsum 13333 mulg1 13335 mulgnndir 13357 lgsval2lem 15335 lgsdir 15360 lgsdilem2 15361 lgsdi 15362 lgsne0 15363 2lgslem1a 15413 2sqlem10 15450 cvgcmp2nlemabs 15763 trilpolemisumle 15769 nconstwlpolem0 15794 |
| Copyright terms: Public domain | W3C validator |