| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elnnuz | Unicode version | ||
| Description: A positive integer expressed as a member of an upper set of integers. (Contributed by NM, 6-Jun-2006.) |
| Ref | Expression |
|---|---|
| elnnuz |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnuz 9686 |
. 2
| |
| 2 | 1 | eleq2i 2272 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-cnex 8018 ax-resscn 8019 ax-1cn 8020 ax-1re 8021 ax-icn 8022 ax-addcl 8023 ax-addrcl 8024 ax-mulcl 8025 ax-addcom 8027 ax-addass 8029 ax-distr 8031 ax-i2m1 8032 ax-0lt1 8033 ax-0id 8035 ax-rnegex 8036 ax-cnre 8038 ax-pre-ltirr 8039 ax-pre-ltwlin 8040 ax-pre-lttrn 8041 ax-pre-ltadd 8043 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4046 df-opab 4107 df-mpt 4108 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-iota 5233 df-fun 5274 df-fv 5280 df-riota 5901 df-ov 5949 df-oprab 5950 df-mpo 5951 df-pnf 8111 df-mnf 8112 df-xr 8113 df-ltxr 8114 df-le 8115 df-sub 8247 df-neg 8248 df-inn 9039 df-z 9375 df-uz 9651 |
| This theorem is referenced by: eluzge3nn 9695 uznnssnn 9700 elnndc 9735 uzsubsubfz1 10172 elfz1end 10179 fznn 10213 fzo1fzo0n0 10309 elfzonlteqm1 10341 rebtwn2z 10399 nnsinds 10592 exp3vallem 10687 exp1 10692 expp1 10693 facp1 10877 faclbnd 10888 bcn1 10905 resqrexlemf1 11352 resqrexlemfp1 11353 summodclem3 11724 summodclem2a 11725 fsum3 11731 fsumcl2lem 11742 fsumadd 11750 sumsnf 11753 fsummulc2 11792 trireciplem 11844 geo2lim 11860 geoisum1 11863 geoisum1c 11864 cvgratnnlemnexp 11868 cvgratz 11876 prodmodclem3 11919 prodmodclem2a 11920 fprodseq 11927 fprodmul 11935 prodsnf 11936 fprodfac 11959 dvdsfac 12204 gcdsupex 12311 gcdsupcl 12312 prmind2 12475 eulerthlemrprm 12584 eulerthlema 12585 pcmpt 12699 prmunb 12718 nninfdclemp1 12854 structfn 12884 mulgnngsum 13496 mulg1 13498 mulgnndir 13520 lgsval2lem 15520 lgsdir 15545 lgsdilem2 15546 lgsdi 15547 lgsne0 15548 2lgslem1a 15598 2sqlem10 15635 cvgcmp2nlemabs 16008 trilpolemisumle 16014 nconstwlpolem0 16039 |
| Copyright terms: Public domain | W3C validator |