| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elnnuz | Unicode version | ||
| Description: A positive integer expressed as a member of an upper set of integers. (Contributed by NM, 6-Jun-2006.) |
| Ref | Expression |
|---|---|
| elnnuz |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnuz 9758 |
. 2
| |
| 2 | 1 | eleq2i 2296 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-addass 8101 ax-distr 8103 ax-i2m1 8104 ax-0lt1 8105 ax-0id 8107 ax-rnegex 8108 ax-cnre 8110 ax-pre-ltirr 8111 ax-pre-ltwlin 8112 ax-pre-lttrn 8113 ax-pre-ltadd 8115 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-sub 8319 df-neg 8320 df-inn 9111 df-z 9447 df-uz 9723 |
| This theorem is referenced by: eluzge3nn 9767 uznnssnn 9772 elnndc 9807 uzsubsubfz1 10244 elfz1end 10251 fznn 10285 fzo1fzo0n0 10383 elfzonlteqm1 10416 rebtwn2z 10474 nnsinds 10667 exp3vallem 10762 exp1 10767 expp1 10768 facp1 10952 faclbnd 10963 bcn1 10980 resqrexlemf1 11519 resqrexlemfp1 11520 summodclem3 11891 summodclem2a 11892 fsum3 11898 fsumcl2lem 11909 fsumadd 11917 sumsnf 11920 fsummulc2 11959 trireciplem 12011 geo2lim 12027 geoisum1 12030 geoisum1c 12031 cvgratnnlemnexp 12035 cvgratz 12043 prodmodclem3 12086 prodmodclem2a 12087 fprodseq 12094 fprodmul 12102 prodsnf 12103 fprodfac 12126 dvdsfac 12371 gcdsupex 12478 gcdsupcl 12479 prmind2 12642 eulerthlemrprm 12751 eulerthlema 12752 pcmpt 12866 prmunb 12885 nninfdclemp1 13021 structfn 13051 mulgnngsum 13664 mulg1 13666 mulgnndir 13688 lgsval2lem 15689 lgsdir 15714 lgsdilem2 15715 lgsdi 15716 lgsne0 15717 2lgslem1a 15767 2sqlem10 15804 cvgcmp2nlemabs 16400 trilpolemisumle 16406 nconstwlpolem0 16431 |
| Copyright terms: Public domain | W3C validator |