ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elnnuz Unicode version

Theorem elnnuz 8948
Description: A positive integer expressed as a member of an upper set of integers. (Contributed by NM, 6-Jun-2006.)
Assertion
Ref Expression
elnnuz  |-  ( N  e.  NN  <->  N  e.  ( ZZ>= `  1 )
)

Proof of Theorem elnnuz
StepHypRef Expression
1 nnuz 8947 . 2  |-  NN  =  ( ZZ>= `  1 )
21eleq2i 2149 1  |-  ( N  e.  NN  <->  N  e.  ( ZZ>= `  1 )
)
Colors of variables: wff set class
Syntax hints:    <-> wb 103    e. wcel 1434   ` cfv 4967   1c1 7252   NNcn 8314   ZZ>=cuz 8912
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3922  ax-pow 3974  ax-pr 3999  ax-un 4223  ax-setind 4315  ax-cnex 7337  ax-resscn 7338  ax-1cn 7339  ax-1re 7340  ax-icn 7341  ax-addcl 7342  ax-addrcl 7343  ax-mulcl 7344  ax-addcom 7346  ax-addass 7348  ax-distr 7350  ax-i2m1 7351  ax-0lt1 7352  ax-0id 7354  ax-rnegex 7355  ax-cnre 7357  ax-pre-ltirr 7358  ax-pre-ltwlin 7359  ax-pre-lttrn 7360  ax-pre-ltadd 7362
This theorem depends on definitions:  df-bi 115  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2614  df-sbc 2827  df-dif 2986  df-un 2988  df-in 2990  df-ss 2997  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-uni 3628  df-int 3663  df-br 3812  df-opab 3866  df-mpt 3867  df-id 4083  df-xp 4405  df-rel 4406  df-cnv 4407  df-co 4408  df-dm 4409  df-iota 4932  df-fun 4969  df-fv 4975  df-riota 5545  df-ov 5592  df-oprab 5593  df-mpt2 5594  df-pnf 7425  df-mnf 7426  df-xr 7427  df-ltxr 7428  df-le 7429  df-sub 7556  df-neg 7557  df-inn 8315  df-z 8645  df-uz 8913
This theorem is referenced by:  eluzge3nn  8953  uznnssnn  8958  uzsubsubfz1  9355  elfz1end  9362  fznn  9394  fzo1fzo0n0  9481  elfzonlteqm1  9508  rebtwn2z  9553  nnsinds  9736  expivallem  9791  expival  9792  exp1  9796  expp1  9797  facp1  9971  faclbnd  9982  bcn1  9999  resqrexlemf1  10266  resqrexlemfp1  10267  dvdsfac  10639  gcdsupex  10727  gcdsupcl  10728  prmind2  10880
  Copyright terms: Public domain W3C validator