| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elnnuz | Unicode version | ||
| Description: A positive integer expressed as a member of an upper set of integers. (Contributed by NM, 6-Jun-2006.) |
| Ref | Expression |
|---|---|
| elnnuz |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnuz 9684 |
. 2
| |
| 2 | 1 | eleq2i 2272 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-addcom 8025 ax-addass 8027 ax-distr 8029 ax-i2m1 8030 ax-0lt1 8031 ax-0id 8033 ax-rnegex 8034 ax-cnre 8036 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 ax-pre-ltadd 8041 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-iota 5232 df-fun 5273 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-sub 8245 df-neg 8246 df-inn 9037 df-z 9373 df-uz 9649 |
| This theorem is referenced by: eluzge3nn 9693 uznnssnn 9698 elnndc 9733 uzsubsubfz1 10170 elfz1end 10177 fznn 10211 fzo1fzo0n0 10307 elfzonlteqm1 10339 rebtwn2z 10397 nnsinds 10590 exp3vallem 10685 exp1 10690 expp1 10691 facp1 10875 faclbnd 10886 bcn1 10903 resqrexlemf1 11319 resqrexlemfp1 11320 summodclem3 11691 summodclem2a 11692 fsum3 11698 fsumcl2lem 11709 fsumadd 11717 sumsnf 11720 fsummulc2 11759 trireciplem 11811 geo2lim 11827 geoisum1 11830 geoisum1c 11831 cvgratnnlemnexp 11835 cvgratz 11843 prodmodclem3 11886 prodmodclem2a 11887 fprodseq 11894 fprodmul 11902 prodsnf 11903 fprodfac 11926 dvdsfac 12171 gcdsupex 12278 gcdsupcl 12279 prmind2 12442 eulerthlemrprm 12551 eulerthlema 12552 pcmpt 12666 prmunb 12685 nninfdclemp1 12821 structfn 12851 mulgnngsum 13463 mulg1 13465 mulgnndir 13487 lgsval2lem 15487 lgsdir 15512 lgsdilem2 15513 lgsdi 15514 lgsne0 15515 2lgslem1a 15565 2sqlem10 15602 cvgcmp2nlemabs 15971 trilpolemisumle 15977 nconstwlpolem0 16002 |
| Copyright terms: Public domain | W3C validator |