ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prdsval Unicode version

Theorem prdsval 13272
Description: Value of the structure product. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Mario Carneiro, 7-Jan-2017.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by Zhi Wang, 18-Aug-2024.)
Hypotheses
Ref Expression
prdsval.p  |-  P  =  ( S X_s R )
prdsval.k  |-  K  =  ( Base `  S
)
prdsval.i  |-  ( ph  ->  dom  R  =  I )
prdsval.b  |-  ( ph  ->  B  =  X_ x  e.  I  ( Base `  ( R `  x
) ) )
prdsval.a  |-  ( ph  ->  .+  =  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x ) ( +g  `  ( R `  x )
) ( g `  x ) ) ) ) )
prdsval.t  |-  ( ph  ->  .X.  =  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x ) ( .r `  ( R `  x )
) ( g `  x ) ) ) ) )
prdsval.m  |-  ( ph  ->  .x.  =  ( f  e.  K ,  g  e.  B  |->  ( x  e.  I  |->  ( f ( .s `  ( R `  x )
) ( g `  x ) ) ) ) )
prdsval.j  |-  ( ph  ->  .,  =  ( f  e.  B ,  g  e.  B  |->  ( S 
gsumg  ( x  e.  I  |->  ( ( f `  x ) ( .i
`  ( R `  x ) ) ( g `  x ) ) ) ) ) )
prdsval.o  |-  ( ph  ->  O  =  ( Xt_ `  ( TopOpen  o.  R )
) )
prdsval.l  |-  ( ph  -> 
.<_  =  { <. f ,  g >.  |  ( { f ,  g }  C_  B  /\  A. x  e.  I  ( f `  x ) ( le `  ( R `  x )
) ( g `  x ) ) } )
prdsval.d  |-  ( ph  ->  D  =  ( f  e.  B ,  g  e.  B  |->  sup (
( ran  ( x  e.  I  |->  ( ( f `  x ) ( dist `  ( R `  x )
) ( g `  x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) ) )
prdsval.h  |-  ( ph  ->  H  =  ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I  ( (
f `  x )
( Hom  `  ( R `
 x ) ) ( g `  x
) ) ) )
prdsval.x  |-  ( ph  -> 
.xb  =  ( a  e.  ( B  X.  B ) ,  c  e.  B  |->  ( d  e.  ( ( 2nd `  a ) H c ) ,  e  e.  ( H `  a
)  |->  ( x  e.  I  |->  ( ( d `
 x ) (
<. ( ( 1st `  a
) `  x ) ,  ( ( 2nd `  a ) `  x
) >. (comp `  ( R `  x )
) ( c `  x ) ) ( e `  x ) ) ) ) ) )
prdsval.s  |-  ( ph  ->  S  e.  W )
prdsval.r  |-  ( ph  ->  R  e.  Z )
Assertion
Ref Expression
prdsval  |-  ( ph  ->  P  =  ( ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .X.  >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) , 
.x.  >. ,  <. ( .i `  ndx ) , 
.,  >. } )  u.  ( { <. (TopSet ` 
ndx ) ,  O >. ,  <. ( le `  ndx ) ,  .<_  >. ,  <. (
dist `  ndx ) ,  D >. }  u.  { <. ( Hom  `  ndx ) ,  H >. , 
<. (comp `  ndx ) , 
.xb  >. } ) ) )
Distinct variable groups:    a, c, d, e, f, g, B    H, a, c, d, e   
x, a, ph, c,
d, e, f, g   
x, I    R, a,
c, d, e, f, g, x    S, a, c, d, e, f, g, x    f, K, g
Allowed substitution hints:    B( x)    D( x, e, f, g, a, c, d)    P( x, e, f, g, a, c, d)    .+ ( x, e, f, g, a, c, d)    .xb ( x, e, f, g, a, c, d)    .x. ( x, e, f, g, a, c, d)    .X. ( x, e, f, g, a, c, d)    H( x, f, g)    ., ( x, e, f, g, a, c, d)    I(
e, f, g, a, c, d)    K( x, e, a, c, d)    .<_ ( x, e, f, g, a, c, d)    O( x, e, f, g, a, c, d)    W( x, e, f, g, a, c, d)    Z( x, e, f, g, a, c, d)

Proof of Theorem prdsval
Dummy variables  h  r  s  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prdsval.p . 2  |-  P  =  ( S X_s R )
2 df-prds 13266 . . . 4  |-  X_s  =  (
s  e.  _V , 
r  e.  _V  |->  [_ X_ x  e.  dom  r
( Base `  ( r `  x ) )  / 
v ]_ [_ ( f  e.  v ,  g  e.  v  |->  X_ x  e.  dom  r ( ( f `  x ) ( Hom  `  (
r `  x )
) ( g `  x ) ) )  /  h ]_ (
( { <. ( Base `  ndx ) ,  v >. ,  <. ( +g  `  ndx ) ,  ( f  e.  v ,  g  e.  v 
|->  ( x  e.  dom  r  |->  ( ( f `
 x ) ( +g  `  ( r `
 x ) ) ( g `  x
) ) ) )
>. ,  <. ( .r
`  ndx ) ,  ( f  e.  v ,  g  e.  v  |->  ( x  e.  dom  r  |->  ( ( f `  x ) ( .r
`  ( r `  x ) ) ( g `  x ) ) ) ) >. }  u.  { <. (Scalar ` 
ndx ) ,  s
>. ,  <. ( .s
`  ndx ) ,  ( f  e.  ( Base `  s ) ,  g  e.  v  |->  ( x  e.  dom  r  |->  ( f ( .s `  ( r `  x
) ) ( g `
 x ) ) ) ) >. ,  <. ( .i `  ndx ) ,  ( f  e.  v ,  g  e.  v  |->  ( s  gsumg  ( x  e.  dom  r  |->  ( ( f `  x
) ( .i `  ( r `  x
) ) ( g `
 x ) ) ) ) ) >. } )  u.  ( { <. (TopSet `  ndx ) ,  ( Xt_ `  ( TopOpen  o.  r )
) >. ,  <. ( le `  ndx ) ,  { <. f ,  g
>.  |  ( {
f ,  g } 
C_  v  /\  A. x  e.  dom  r ( f `  x ) ( le `  (
r `  x )
) ( g `  x ) ) }
>. ,  <. ( dist `  ndx ) ,  ( f  e.  v ,  g  e.  v  |->  sup ( ( ran  (
x  e.  dom  r  |->  ( ( f `  x ) ( dist `  ( r `  x
) ) ( g `
 x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) ) >. }  u.  { <. ( Hom  `  ndx ) ,  h >. ,  <. (comp ` 
ndx ) ,  ( a  e.  ( v  X.  v ) ,  c  e.  v  |->  ( d  e.  ( ( 2nd `  a ) h c ) ,  e  e.  ( h `
 a )  |->  ( x  e.  dom  r  |->  ( ( d `  x ) ( <.
( ( 1st `  a
) `  x ) ,  ( ( 2nd `  a ) `  x
) >. (comp `  (
r `  x )
) ( c `  x ) ) ( e `  x ) ) ) ) )
>. } ) ) )
32a1i 9 . . 3  |-  ( ph  -> 
X_s 
=  ( s  e. 
_V ,  r  e. 
_V  |->  [_ X_ x  e.  dom  r ( Base `  (
r `  x )
)  /  v ]_ [_ ( f  e.  v ,  g  e.  v 
|->  X_ x  e.  dom  r ( ( f `
 x ) ( Hom  `  ( r `  x ) ) ( g `  x ) ) )  /  h ]_ ( ( { <. (
Base `  ndx ) ,  v >. ,  <. ( +g  `  ndx ) ,  ( f  e.  v ,  g  e.  v 
|->  ( x  e.  dom  r  |->  ( ( f `
 x ) ( +g  `  ( r `
 x ) ) ( g `  x
) ) ) )
>. ,  <. ( .r
`  ndx ) ,  ( f  e.  v ,  g  e.  v  |->  ( x  e.  dom  r  |->  ( ( f `  x ) ( .r
`  ( r `  x ) ) ( g `  x ) ) ) ) >. }  u.  { <. (Scalar ` 
ndx ) ,  s
>. ,  <. ( .s
`  ndx ) ,  ( f  e.  ( Base `  s ) ,  g  e.  v  |->  ( x  e.  dom  r  |->  ( f ( .s `  ( r `  x
) ) ( g `
 x ) ) ) ) >. ,  <. ( .i `  ndx ) ,  ( f  e.  v ,  g  e.  v  |->  ( s  gsumg  ( x  e.  dom  r  |->  ( ( f `  x
) ( .i `  ( r `  x
) ) ( g `
 x ) ) ) ) ) >. } )  u.  ( { <. (TopSet `  ndx ) ,  ( Xt_ `  ( TopOpen  o.  r )
) >. ,  <. ( le `  ndx ) ,  { <. f ,  g
>.  |  ( {
f ,  g } 
C_  v  /\  A. x  e.  dom  r ( f `  x ) ( le `  (
r `  x )
) ( g `  x ) ) }
>. ,  <. ( dist `  ndx ) ,  ( f  e.  v ,  g  e.  v  |->  sup ( ( ran  (
x  e.  dom  r  |->  ( ( f `  x ) ( dist `  ( r `  x
) ) ( g `
 x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) ) >. }  u.  { <. ( Hom  `  ndx ) ,  h >. ,  <. (comp ` 
ndx ) ,  ( a  e.  ( v  X.  v ) ,  c  e.  v  |->  ( d  e.  ( ( 2nd `  a ) h c ) ,  e  e.  ( h `
 a )  |->  ( x  e.  dom  r  |->  ( ( d `  x ) ( <.
( ( 1st `  a
) `  x ) ,  ( ( 2nd `  a ) `  x
) >. (comp `  (
r `  x )
) ( c `  x ) ) ( e `  x ) ) ) ) )
>. } ) ) ) )
4 vex 2782 . . . . . . . . . . . 12  |-  r  e. 
_V
54rnex 4968 . . . . . . . . . . 11  |-  ran  r  e.  _V
65uniex 4505 . . . . . . . . . 10  |-  U. ran  r  e.  _V
76rnex 4968 . . . . . . . . 9  |-  ran  U. ran  r  e.  _V
87uniex 4505 . . . . . . . 8  |-  U. ran  U.
ran  r  e.  _V
9 baseid 13052 . . . . . . . . . . . . 13  |-  Base  = Slot  ( Base `  ndx )
10 vex 2782 . . . . . . . . . . . . . . 15  |-  x  e. 
_V
114, 10fvex 5623 . . . . . . . . . . . . . 14  |-  ( r `
 x )  e. 
_V
1211a1i 9 . . . . . . . . . . . . 13  |-  ( T. 
->  ( r `  x
)  e.  _V )
13 basendxnn 13054 . . . . . . . . . . . . . 14  |-  ( Base `  ndx )  e.  NN
1413a1i 9 . . . . . . . . . . . . 13  |-  ( T. 
->  ( Base `  ndx )  e.  NN )
159, 12, 14strfvssn 13020 . . . . . . . . . . . 12  |-  ( T. 
->  ( Base `  (
r `  x )
)  C_  U. ran  (
r `  x )
)
1615mptru 1384 . . . . . . . . . . 11  |-  ( Base `  ( r `  x
) )  C_  U. ran  ( r `  x
)
17 fvssunirng 5618 . . . . . . . . . . . . 13  |-  ( x  e.  _V  ->  (
r `  x )  C_ 
U. ran  r )
1817elv 2783 . . . . . . . . . . . 12  |-  ( r `
 x )  C_  U.
ran  r
19 rnss 4930 . . . . . . . . . . . 12  |-  ( ( r `  x ) 
C_  U. ran  r  ->  ran  ( r `  x
)  C_  ran  U. ran  r )
20 uniss 3888 . . . . . . . . . . . 12  |-  ( ran  ( r `  x
)  C_  ran  U. ran  r  ->  U. ran  ( r `
 x )  C_  U.
ran  U. ran  r )
2118, 19, 20mp2b 8 . . . . . . . . . . 11  |-  U. ran  ( r `  x
)  C_  U. ran  U. ran  r
2216, 21sstri 3213 . . . . . . . . . 10  |-  ( Base `  ( r `  x
) )  C_  U. ran  U.
ran  r
2322rgenw 2565 . . . . . . . . 9  |-  A. x  e.  dom  r ( Base `  ( r `  x
) )  C_  U. ran  U.
ran  r
24 iunss 3985 . . . . . . . . 9  |-  ( U_ x  e.  dom  r (
Base `  ( r `  x ) )  C_  U.
ran  U. ran  r  <->  A. x  e.  dom  r ( Base `  ( r `  x
) )  C_  U. ran  U.
ran  r )
2523, 24mpbir 146 . . . . . . . 8  |-  U_ x  e.  dom  r ( Base `  ( r `  x
) )  C_  U. ran  U.
ran  r
268, 25ssexi 4201 . . . . . . 7  |-  U_ x  e.  dom  r ( Base `  ( r `  x
) )  e.  _V
27 ixpssmap2g 6844 . . . . . . 7  |-  ( U_ x  e.  dom  r (
Base `  ( r `  x ) )  e. 
_V  ->  X_ x  e.  dom  r ( Base `  (
r `  x )
)  C_  ( U_ x  e.  dom  r (
Base `  ( r `  x ) )  ^m  dom  r ) )
2826, 27ax-mp 5 . . . . . 6  |-  X_ x  e.  dom  r ( Base `  ( r `  x
) )  C_  ( U_ x  e.  dom  r ( Base `  (
r `  x )
)  ^m  dom  r )
29 fnmap 6772 . . . . . . . 8  |-  ^m  Fn  ( _V  X.  _V )
304dmex 4967 . . . . . . . 8  |-  dom  r  e.  _V
31 fnovex 6007 . . . . . . . 8  |-  ( (  ^m  Fn  ( _V 
X.  _V )  /\  U_ x  e.  dom  r (
Base `  ( r `  x ) )  e. 
_V  /\  dom  r  e. 
_V )  ->  ( U_ x  e.  dom  r ( Base `  (
r `  x )
)  ^m  dom  r )  e.  _V )
3229, 26, 30, 31mp3an 1352 . . . . . . 7  |-  ( U_ x  e.  dom  r (
Base `  ( r `  x ) )  ^m  dom  r )  e.  _V
3332ssex 4200 . . . . . 6  |-  ( X_ x  e.  dom  r (
Base `  ( r `  x ) )  C_  ( U_ x  e.  dom  r ( Base `  (
r `  x )
)  ^m  dom  r )  ->  X_ x  e.  dom  r ( Base `  (
r `  x )
)  e.  _V )
3428, 33mp1i 10 . . . . 5  |-  ( ( ( ph  /\  s  =  S )  /\  r  =  R )  ->  X_ x  e.  dom  r ( Base `  ( r `  x
) )  e.  _V )
35 simpr 110 . . . . . . . . 9  |-  ( ( ( ph  /\  s  =  S )  /\  r  =  R )  ->  r  =  R )
3635fveq1d 5605 . . . . . . . 8  |-  ( ( ( ph  /\  s  =  S )  /\  r  =  R )  ->  (
r `  x )  =  ( R `  x ) )
3736fveq2d 5607 . . . . . . 7  |-  ( ( ( ph  /\  s  =  S )  /\  r  =  R )  ->  ( Base `  ( r `  x ) )  =  ( Base `  ( R `  x )
) )
3837ixpeq2dv 6831 . . . . . 6  |-  ( ( ( ph  /\  s  =  S )  /\  r  =  R )  ->  X_ x  e.  I  ( Base `  ( r `  x
) )  =  X_ x  e.  I  ( Base `  ( R `  x ) ) )
3935dmeqd 4902 . . . . . . . 8  |-  ( ( ( ph  /\  s  =  S )  /\  r  =  R )  ->  dom  r  =  dom  R )
40 prdsval.i . . . . . . . . 9  |-  ( ph  ->  dom  R  =  I )
4140ad2antrr 488 . . . . . . . 8  |-  ( ( ( ph  /\  s  =  S )  /\  r  =  R )  ->  dom  R  =  I )
4239, 41eqtrd 2242 . . . . . . 7  |-  ( ( ( ph  /\  s  =  S )  /\  r  =  R )  ->  dom  r  =  I )
4342ixpeq1d 6827 . . . . . 6  |-  ( ( ( ph  /\  s  =  S )  /\  r  =  R )  ->  X_ x  e.  dom  r ( Base `  ( r `  x
) )  =  X_ x  e.  I  ( Base `  ( r `  x ) ) )
44 prdsval.b . . . . . . 7  |-  ( ph  ->  B  =  X_ x  e.  I  ( Base `  ( R `  x
) ) )
4544ad2antrr 488 . . . . . 6  |-  ( ( ( ph  /\  s  =  S )  /\  r  =  R )  ->  B  =  X_ x  e.  I 
( Base `  ( R `  x ) ) )
4638, 43, 453eqtr4d 2252 . . . . 5  |-  ( ( ( ph  /\  s  =  S )  /\  r  =  R )  ->  X_ x  e.  dom  r ( Base `  ( r `  x
) )  =  B )
47 prdsvallem 13271 . . . . . . 7  |-  ( f  e.  v ,  g  e.  v  |->  X_ x  e.  dom  r ( ( f `  x ) ( Hom  `  (
r `  x )
) ( g `  x ) ) )  e.  _V
4847a1i 9 . . . . . 6  |-  ( ( ( ( ph  /\  s  =  S )  /\  r  =  R
)  /\  v  =  B )  ->  (
f  e.  v ,  g  e.  v  |->  X_ x  e.  dom  r ( ( f `  x
) ( Hom  `  (
r `  x )
) ( g `  x ) ) )  e.  _V )
49 simpr 110 . . . . . . . 8  |-  ( ( ( ( ph  /\  s  =  S )  /\  r  =  R
)  /\  v  =  B )  ->  v  =  B )
5042adantr 276 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  s  =  S )  /\  r  =  R
)  /\  v  =  B )  ->  dom  r  =  I )
5150ixpeq1d 6827 . . . . . . . . 9  |-  ( ( ( ( ph  /\  s  =  S )  /\  r  =  R
)  /\  v  =  B )  ->  X_ x  e.  dom  r ( ( f `  x ) ( Hom  `  (
r `  x )
) ( g `  x ) )  = 
X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( r `  x
) ) ( g `
 x ) ) )
5236fveq2d 5607 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  s  =  S )  /\  r  =  R )  ->  ( Hom  `  ( r `  x ) )  =  ( Hom  `  ( R `  x )
) )
5352oveqd 5991 . . . . . . . . . . 11  |-  ( ( ( ph  /\  s  =  S )  /\  r  =  R )  ->  (
( f `  x
) ( Hom  `  (
r `  x )
) ( g `  x ) )  =  ( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) )
5453ixpeq2dv 6831 . . . . . . . . . 10  |-  ( ( ( ph  /\  s  =  S )  /\  r  =  R )  ->  X_ x  e.  I  ( (
f `  x )
( Hom  `  ( r `
 x ) ) ( g `  x
) )  =  X_ x  e.  I  (
( f `  x
) ( Hom  `  ( R `  x )
) ( g `  x ) ) )
5554adantr 276 . . . . . . . . 9  |-  ( ( ( ( ph  /\  s  =  S )  /\  r  =  R
)  /\  v  =  B )  ->  X_ x  e.  I  ( (
f `  x )
( Hom  `  ( r `
 x ) ) ( g `  x
) )  =  X_ x  e.  I  (
( f `  x
) ( Hom  `  ( R `  x )
) ( g `  x ) ) )
5651, 55eqtrd 2242 . . . . . . . 8  |-  ( ( ( ( ph  /\  s  =  S )  /\  r  =  R
)  /\  v  =  B )  ->  X_ x  e.  dom  r ( ( f `  x ) ( Hom  `  (
r `  x )
) ( g `  x ) )  = 
X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) )
5749, 49, 56mpoeq123dv 6037 . . . . . . 7  |-  ( ( ( ( ph  /\  s  =  S )  /\  r  =  R
)  /\  v  =  B )  ->  (
f  e.  v ,  g  e.  v  |->  X_ x  e.  dom  r ( ( f `  x
) ( Hom  `  (
r `  x )
) ( g `  x ) ) )  =  ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) )
58 prdsval.h . . . . . . . 8  |-  ( ph  ->  H  =  ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I  ( (
f `  x )
( Hom  `  ( R `
 x ) ) ( g `  x
) ) ) )
5958ad3antrrr 492 . . . . . . 7  |-  ( ( ( ( ph  /\  s  =  S )  /\  r  =  R
)  /\  v  =  B )  ->  H  =  ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) )
6057, 59eqtr4d 2245 . . . . . 6  |-  ( ( ( ( ph  /\  s  =  S )  /\  r  =  R
)  /\  v  =  B )  ->  (
f  e.  v ,  g  e.  v  |->  X_ x  e.  dom  r ( ( f `  x
) ( Hom  `  (
r `  x )
) ( g `  x ) ) )  =  H )
61 simplr 528 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  s  =  S )  /\  r  =  R )  /\  v  =  B )  /\  h  =  H )  ->  v  =  B )
6261opeq2d 3843 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  s  =  S )  /\  r  =  R )  /\  v  =  B )  /\  h  =  H )  ->  <. ( Base `  ndx ) ,  v >.  =  <. (
Base `  ndx ) ,  B >. )
6336fveq2d 5607 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  s  =  S )  /\  r  =  R )  ->  ( +g  `  ( r `  x ) )  =  ( +g  `  ( R `  x )
) )
6463oveqd 5991 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  s  =  S )  /\  r  =  R )  ->  (
( f `  x
) ( +g  `  (
r `  x )
) ( g `  x ) )  =  ( ( f `  x ) ( +g  `  ( R `  x
) ) ( g `
 x ) ) )
6542, 64mpteq12dv 4145 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  s  =  S )  /\  r  =  R )  ->  (
x  e.  dom  r  |->  ( ( f `  x ) ( +g  `  ( r `  x
) ) ( g `
 x ) ) )  =  ( x  e.  I  |->  ( ( f `  x ) ( +g  `  ( R `  x )
) ( g `  x ) ) ) )
6665adantr 276 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  s  =  S )  /\  r  =  R
)  /\  v  =  B )  ->  (
x  e.  dom  r  |->  ( ( f `  x ) ( +g  `  ( r `  x
) ) ( g `
 x ) ) )  =  ( x  e.  I  |->  ( ( f `  x ) ( +g  `  ( R `  x )
) ( g `  x ) ) ) )
6749, 49, 66mpoeq123dv 6037 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  s  =  S )  /\  r  =  R
)  /\  v  =  B )  ->  (
f  e.  v ,  g  e.  v  |->  ( x  e.  dom  r  |->  ( ( f `  x ) ( +g  `  ( r `  x
) ) ( g `
 x ) ) ) )  =  ( f  e.  B , 
g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x
) ( +g  `  ( R `  x )
) ( g `  x ) ) ) ) )
6867adantr 276 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  s  =  S )  /\  r  =  R )  /\  v  =  B )  /\  h  =  H )  ->  (
f  e.  v ,  g  e.  v  |->  ( x  e.  dom  r  |->  ( ( f `  x ) ( +g  `  ( r `  x
) ) ( g `
 x ) ) ) )  =  ( f  e.  B , 
g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x
) ( +g  `  ( R `  x )
) ( g `  x ) ) ) ) )
69 prdsval.a . . . . . . . . . . . 12  |-  ( ph  ->  .+  =  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x ) ( +g  `  ( R `  x )
) ( g `  x ) ) ) ) )
7069ad4antr 494 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  s  =  S )  /\  r  =  R )  /\  v  =  B )  /\  h  =  H )  ->  .+  =  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x ) ( +g  `  ( R `  x
) ) ( g `
 x ) ) ) ) )
7168, 70eqtr4d 2245 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  s  =  S )  /\  r  =  R )  /\  v  =  B )  /\  h  =  H )  ->  (
f  e.  v ,  g  e.  v  |->  ( x  e.  dom  r  |->  ( ( f `  x ) ( +g  `  ( r `  x
) ) ( g `
 x ) ) ) )  =  .+  )
7271opeq2d 3843 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  s  =  S )  /\  r  =  R )  /\  v  =  B )  /\  h  =  H )  ->  <. ( +g  `  ndx ) ,  ( f  e.  v ,  g  e.  v 
|->  ( x  e.  dom  r  |->  ( ( f `
 x ) ( +g  `  ( r `
 x ) ) ( g `  x
) ) ) )
>.  =  <. ( +g  ` 
ndx ) ,  .+  >.
)
7336fveq2d 5607 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  s  =  S )  /\  r  =  R )  ->  ( .r `  ( r `  x ) )  =  ( .r `  ( R `  x )
) )
7473oveqd 5991 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  s  =  S )  /\  r  =  R )  ->  (
( f `  x
) ( .r `  ( r `  x
) ) ( g `
 x ) )  =  ( ( f `
 x ) ( .r `  ( R `
 x ) ) ( g `  x
) ) )
7542, 74mpteq12dv 4145 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  s  =  S )  /\  r  =  R )  ->  (
x  e.  dom  r  |->  ( ( f `  x ) ( .r
`  ( r `  x ) ) ( g `  x ) ) )  =  ( x  e.  I  |->  ( ( f `  x
) ( .r `  ( R `  x ) ) ( g `  x ) ) ) )
7675adantr 276 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  s  =  S )  /\  r  =  R
)  /\  v  =  B )  ->  (
x  e.  dom  r  |->  ( ( f `  x ) ( .r
`  ( r `  x ) ) ( g `  x ) ) )  =  ( x  e.  I  |->  ( ( f `  x
) ( .r `  ( R `  x ) ) ( g `  x ) ) ) )
7749, 49, 76mpoeq123dv 6037 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  s  =  S )  /\  r  =  R
)  /\  v  =  B )  ->  (
f  e.  v ,  g  e.  v  |->  ( x  e.  dom  r  |->  ( ( f `  x ) ( .r
`  ( r `  x ) ) ( g `  x ) ) ) )  =  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x ) ( .r
`  ( R `  x ) ) ( g `  x ) ) ) ) )
7877adantr 276 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  s  =  S )  /\  r  =  R )  /\  v  =  B )  /\  h  =  H )  ->  (
f  e.  v ,  g  e.  v  |->  ( x  e.  dom  r  |->  ( ( f `  x ) ( .r
`  ( r `  x ) ) ( g `  x ) ) ) )  =  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x ) ( .r
`  ( R `  x ) ) ( g `  x ) ) ) ) )
79 prdsval.t . . . . . . . . . . . 12  |-  ( ph  ->  .X.  =  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x ) ( .r `  ( R `  x )
) ( g `  x ) ) ) ) )
8079ad4antr 494 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  s  =  S )  /\  r  =  R )  /\  v  =  B )  /\  h  =  H )  ->  .X.  =  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x ) ( .r
`  ( R `  x ) ) ( g `  x ) ) ) ) )
8178, 80eqtr4d 2245 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  s  =  S )  /\  r  =  R )  /\  v  =  B )  /\  h  =  H )  ->  (
f  e.  v ,  g  e.  v  |->  ( x  e.  dom  r  |->  ( ( f `  x ) ( .r
`  ( r `  x ) ) ( g `  x ) ) ) )  = 
.X.  )
8281opeq2d 3843 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  s  =  S )  /\  r  =  R )  /\  v  =  B )  /\  h  =  H )  ->  <. ( .r `  ndx ) ,  ( f  e.  v ,  g  e.  v 
|->  ( x  e.  dom  r  |->  ( ( f `
 x ) ( .r `  ( r `
 x ) ) ( g `  x
) ) ) )
>.  =  <. ( .r
`  ndx ) ,  .X.  >.
)
8362, 72, 82tpeq123d 3738 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  s  =  S )  /\  r  =  R )  /\  v  =  B )  /\  h  =  H )  ->  { <. (
Base `  ndx ) ,  v >. ,  <. ( +g  `  ndx ) ,  ( f  e.  v ,  g  e.  v 
|->  ( x  e.  dom  r  |->  ( ( f `
 x ) ( +g  `  ( r `
 x ) ) ( g `  x
) ) ) )
>. ,  <. ( .r
`  ndx ) ,  ( f  e.  v ,  g  e.  v  |->  ( x  e.  dom  r  |->  ( ( f `  x ) ( .r
`  ( r `  x ) ) ( g `  x ) ) ) ) >. }  =  { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+  >. ,  <. ( .r `  ndx ) , 
.X.  >. } )
84 simp-4r 542 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  s  =  S )  /\  r  =  R )  /\  v  =  B )  /\  h  =  H )  ->  s  =  S )
8584opeq2d 3843 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  s  =  S )  /\  r  =  R )  /\  v  =  B )  /\  h  =  H )  ->  <. (Scalar ` 
ndx ) ,  s
>.  =  <. (Scalar `  ndx ) ,  S >. )
86 simpllr 534 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  s  =  S )  /\  r  =  R
)  /\  v  =  B )  ->  s  =  S )
8786fveq2d 5607 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  s  =  S )  /\  r  =  R
)  /\  v  =  B )  ->  ( Base `  s )  =  ( Base `  S
) )
88 prdsval.k . . . . . . . . . . . . . 14  |-  K  =  ( Base `  S
)
8987, 88eqtr4di 2260 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  s  =  S )  /\  r  =  R
)  /\  v  =  B )  ->  ( Base `  s )  =  K )
9036fveq2d 5607 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  s  =  S )  /\  r  =  R )  ->  ( .s `  ( r `  x ) )  =  ( .s `  ( R `  x )
) )
9190oveqd 5991 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  s  =  S )  /\  r  =  R )  ->  (
f ( .s `  ( r `  x
) ) ( g `
 x ) )  =  ( f ( .s `  ( R `
 x ) ) ( g `  x
) ) )
9242, 91mpteq12dv 4145 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  s  =  S )  /\  r  =  R )  ->  (
x  e.  dom  r  |->  ( f ( .s
`  ( r `  x ) ) ( g `  x ) ) )  =  ( x  e.  I  |->  ( f ( .s `  ( R `  x ) ) ( g `  x ) ) ) )
9392adantr 276 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  s  =  S )  /\  r  =  R
)  /\  v  =  B )  ->  (
x  e.  dom  r  |->  ( f ( .s
`  ( r `  x ) ) ( g `  x ) ) )  =  ( x  e.  I  |->  ( f ( .s `  ( R `  x ) ) ( g `  x ) ) ) )
9489, 49, 93mpoeq123dv 6037 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  s  =  S )  /\  r  =  R
)  /\  v  =  B )  ->  (
f  e.  ( Base `  s ) ,  g  e.  v  |->  ( x  e.  dom  r  |->  ( f ( .s `  ( r `  x
) ) ( g `
 x ) ) ) )  =  ( f  e.  K , 
g  e.  B  |->  ( x  e.  I  |->  ( f ( .s `  ( R `  x ) ) ( g `  x ) ) ) ) )
9594adantr 276 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  s  =  S )  /\  r  =  R )  /\  v  =  B )  /\  h  =  H )  ->  (
f  e.  ( Base `  s ) ,  g  e.  v  |->  ( x  e.  dom  r  |->  ( f ( .s `  ( r `  x
) ) ( g `
 x ) ) ) )  =  ( f  e.  K , 
g  e.  B  |->  ( x  e.  I  |->  ( f ( .s `  ( R `  x ) ) ( g `  x ) ) ) ) )
96 prdsval.m . . . . . . . . . . . 12  |-  ( ph  ->  .x.  =  ( f  e.  K ,  g  e.  B  |->  ( x  e.  I  |->  ( f ( .s `  ( R `  x )
) ( g `  x ) ) ) ) )
9796ad4antr 494 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  s  =  S )  /\  r  =  R )  /\  v  =  B )  /\  h  =  H )  ->  .x.  =  ( f  e.  K ,  g  e.  B  |->  ( x  e.  I  |->  ( f ( .s
`  ( R `  x ) ) ( g `  x ) ) ) ) )
9895, 97eqtr4d 2245 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  s  =  S )  /\  r  =  R )  /\  v  =  B )  /\  h  =  H )  ->  (
f  e.  ( Base `  s ) ,  g  e.  v  |->  ( x  e.  dom  r  |->  ( f ( .s `  ( r `  x
) ) ( g `
 x ) ) ) )  =  .x.  )
9998opeq2d 3843 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  s  =  S )  /\  r  =  R )  /\  v  =  B )  /\  h  =  H )  ->  <. ( .s `  ndx ) ,  ( f  e.  (
Base `  s ) ,  g  e.  v  |->  ( x  e.  dom  r  |->  ( f ( .s `  ( r `
 x ) ) ( g `  x
) ) ) )
>.  =  <. ( .s
`  ndx ) ,  .x.  >.
)
10036fveq2d 5607 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  s  =  S )  /\  r  =  R )  ->  ( .i `  ( r `  x ) )  =  ( .i `  ( R `  x )
) )
101100oveqd 5991 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  s  =  S )  /\  r  =  R )  ->  (
( f `  x
) ( .i `  ( r `  x
) ) ( g `
 x ) )  =  ( ( f `
 x ) ( .i `  ( R `
 x ) ) ( g `  x
) ) )
10242, 101mpteq12dv 4145 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  s  =  S )  /\  r  =  R )  ->  (
x  e.  dom  r  |->  ( ( f `  x ) ( .i
`  ( r `  x ) ) ( g `  x ) ) )  =  ( x  e.  I  |->  ( ( f `  x
) ( .i `  ( R `  x ) ) ( g `  x ) ) ) )
103102adantr 276 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  s  =  S )  /\  r  =  R
)  /\  v  =  B )  ->  (
x  e.  dom  r  |->  ( ( f `  x ) ( .i
`  ( r `  x ) ) ( g `  x ) ) )  =  ( x  e.  I  |->  ( ( f `  x
) ( .i `  ( R `  x ) ) ( g `  x ) ) ) )
10486, 103oveq12d 5992 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  s  =  S )  /\  r  =  R
)  /\  v  =  B )  ->  (
s  gsumg  ( x  e.  dom  r  |->  ( ( f `
 x ) ( .i `  ( r `
 x ) ) ( g `  x
) ) ) )  =  ( S  gsumg  ( x  e.  I  |->  ( ( f `  x ) ( .i `  ( R `  x )
) ( g `  x ) ) ) ) )
10549, 49, 104mpoeq123dv 6037 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  s  =  S )  /\  r  =  R
)  /\  v  =  B )  ->  (
f  e.  v ,  g  e.  v  |->  ( s  gsumg  ( x  e.  dom  r  |->  ( ( f `
 x ) ( .i `  ( r `
 x ) ) ( g `  x
) ) ) ) )  =  ( f  e.  B ,  g  e.  B  |->  ( S 
gsumg  ( x  e.  I  |->  ( ( f `  x ) ( .i
`  ( R `  x ) ) ( g `  x ) ) ) ) ) )
106105adantr 276 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  s  =  S )  /\  r  =  R )  /\  v  =  B )  /\  h  =  H )  ->  (
f  e.  v ,  g  e.  v  |->  ( s  gsumg  ( x  e.  dom  r  |->  ( ( f `
 x ) ( .i `  ( r `
 x ) ) ( g `  x
) ) ) ) )  =  ( f  e.  B ,  g  e.  B  |->  ( S 
gsumg  ( x  e.  I  |->  ( ( f `  x ) ( .i
`  ( R `  x ) ) ( g `  x ) ) ) ) ) )
107 prdsval.j . . . . . . . . . . . 12  |-  ( ph  ->  .,  =  ( f  e.  B ,  g  e.  B  |->  ( S 
gsumg  ( x  e.  I  |->  ( ( f `  x ) ( .i
`  ( R `  x ) ) ( g `  x ) ) ) ) ) )
108107ad4antr 494 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  s  =  S )  /\  r  =  R )  /\  v  =  B )  /\  h  =  H )  ->  .,  =  ( f  e.  B ,  g  e.  B  |->  ( S  gsumg  ( x  e.  I  |->  ( ( f `  x ) ( .i
`  ( R `  x ) ) ( g `  x ) ) ) ) ) )
109106, 108eqtr4d 2245 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  s  =  S )  /\  r  =  R )  /\  v  =  B )  /\  h  =  H )  ->  (
f  e.  v ,  g  e.  v  |->  ( s  gsumg  ( x  e.  dom  r  |->  ( ( f `
 x ) ( .i `  ( r `
 x ) ) ( g `  x
) ) ) ) )  =  .,  )
110109opeq2d 3843 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  s  =  S )  /\  r  =  R )  /\  v  =  B )  /\  h  =  H )  ->  <. ( .i `  ndx ) ,  ( f  e.  v ,  g  e.  v 
|->  ( s  gsumg  ( x  e.  dom  r  |->  ( ( f `
 x ) ( .i `  ( r `
 x ) ) ( g `  x
) ) ) ) ) >.  =  <. ( .i `  ndx ) ,  .,  >. )
11185, 99, 110tpeq123d 3738 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  s  =  S )  /\  r  =  R )  /\  v  =  B )  /\  h  =  H )  ->  { <. (Scalar `  ndx ) ,  s
>. ,  <. ( .s
`  ndx ) ,  ( f  e.  ( Base `  s ) ,  g  e.  v  |->  ( x  e.  dom  r  |->  ( f ( .s `  ( r `  x
) ) ( g `
 x ) ) ) ) >. ,  <. ( .i `  ndx ) ,  ( f  e.  v ,  g  e.  v  |->  ( s  gsumg  ( x  e.  dom  r  |->  ( ( f `  x
) ( .i `  ( r `  x
) ) ( g `
 x ) ) ) ) ) >. }  =  { <. (Scalar ` 
ndx ) ,  S >. ,  <. ( .s `  ndx ) ,  .x.  >. ,  <. ( .i `  ndx ) ,  .,  >. } )
11283, 111uneq12d 3339 . . . . . . 7  |-  ( ( ( ( ( ph  /\  s  =  S )  /\  r  =  R )  /\  v  =  B )  /\  h  =  H )  ->  ( { <. ( Base `  ndx ) ,  v >. , 
<. ( +g  `  ndx ) ,  ( f  e.  v ,  g  e.  v  |->  ( x  e. 
dom  r  |->  ( ( f `  x ) ( +g  `  (
r `  x )
) ( g `  x ) ) ) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  v ,  g  e.  v 
|->  ( x  e.  dom  r  |->  ( ( f `
 x ) ( .r `  ( r `
 x ) ) ( g `  x
) ) ) )
>. }  u.  { <. (Scalar `  ndx ) ,  s
>. ,  <. ( .s
`  ndx ) ,  ( f  e.  ( Base `  s ) ,  g  e.  v  |->  ( x  e.  dom  r  |->  ( f ( .s `  ( r `  x
) ) ( g `
 x ) ) ) ) >. ,  <. ( .i `  ndx ) ,  ( f  e.  v ,  g  e.  v  |->  ( s  gsumg  ( x  e.  dom  r  |->  ( ( f `  x
) ( .i `  ( r `  x
) ) ( g `
 x ) ) ) ) ) >. } )  =  ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .X.  >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) , 
.x.  >. ,  <. ( .i `  ndx ) , 
.,  >. } ) )
113 simpllr 534 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  s  =  S )  /\  r  =  R )  /\  v  =  B )  /\  h  =  H )  ->  r  =  R )
114113coeq2d 4861 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  s  =  S )  /\  r  =  R )  /\  v  =  B )  /\  h  =  H )  ->  ( TopOpen  o.  r )  =  ( TopOpen  o.  R )
)
115114fveq2d 5607 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  s  =  S )  /\  r  =  R )  /\  v  =  B )  /\  h  =  H )  ->  ( Xt_ `  ( TopOpen  o.  r
) )  =  (
Xt_ `  ( TopOpen  o.  R
) ) )
116 prdsval.o . . . . . . . . . . . 12  |-  ( ph  ->  O  =  ( Xt_ `  ( TopOpen  o.  R )
) )
117116ad4antr 494 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  s  =  S )  /\  r  =  R )  /\  v  =  B )  /\  h  =  H )  ->  O  =  ( Xt_ `  ( TopOpen  o.  R ) ) )
118115, 117eqtr4d 2245 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  s  =  S )  /\  r  =  R )  /\  v  =  B )  /\  h  =  H )  ->  ( Xt_ `  ( TopOpen  o.  r
) )  =  O )
119118opeq2d 3843 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  s  =  S )  /\  r  =  R )  /\  v  =  B )  /\  h  =  H )  ->  <. (TopSet ` 
ndx ) ,  (
Xt_ `  ( TopOpen  o.  r
) ) >.  =  <. (TopSet `  ndx ) ,  O >. )
12049sseq2d 3234 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  s  =  S )  /\  r  =  R
)  /\  v  =  B )  ->  ( { f ,  g }  C_  v  <->  { f ,  g }  C_  B ) )
12136fveq2d 5607 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  s  =  S )  /\  r  =  R )  ->  ( le `  ( r `  x ) )  =  ( le `  ( R `  x )
) )
122121breqd 4073 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  s  =  S )  /\  r  =  R )  ->  (
( f `  x
) ( le `  ( r `  x
) ) ( g `
 x )  <->  ( f `  x ) ( le
`  ( R `  x ) ) ( g `  x ) ) )
12342, 122raleqbidv 2724 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  s  =  S )  /\  r  =  R )  ->  ( A. x  e.  dom  r ( f `  x ) ( le
`  ( r `  x ) ) ( g `  x )  <->  A. x  e.  I 
( f `  x
) ( le `  ( R `  x ) ) ( g `  x ) ) )
124123adantr 276 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  s  =  S )  /\  r  =  R
)  /\  v  =  B )  ->  ( A. x  e.  dom  r ( f `  x ) ( le
`  ( r `  x ) ) ( g `  x )  <->  A. x  e.  I 
( f `  x
) ( le `  ( R `  x ) ) ( g `  x ) ) )
125120, 124anbi12d 473 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  s  =  S )  /\  r  =  R
)  /\  v  =  B )  ->  (
( { f ,  g }  C_  v  /\  A. x  e.  dom  r ( f `  x ) ( le
`  ( r `  x ) ) ( g `  x ) )  <->  ( { f ,  g }  C_  B  /\  A. x  e.  I  ( f `  x ) ( le
`  ( R `  x ) ) ( g `  x ) ) ) )
126125opabbidv 4129 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  s  =  S )  /\  r  =  R
)  /\  v  =  B )  ->  { <. f ,  g >.  |  ( { f ,  g }  C_  v  /\  A. x  e.  dom  r
( f `  x
) ( le `  ( r `  x
) ) ( g `
 x ) ) }  =  { <. f ,  g >.  |  ( { f ,  g }  C_  B  /\  A. x  e.  I  ( f `  x ) ( le `  ( R `  x )
) ( g `  x ) ) } )
127126adantr 276 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  s  =  S )  /\  r  =  R )  /\  v  =  B )  /\  h  =  H )  ->  { <. f ,  g >.  |  ( { f ,  g }  C_  v  /\  A. x  e.  dom  r
( f `  x
) ( le `  ( r `  x
) ) ( g `
 x ) ) }  =  { <. f ,  g >.  |  ( { f ,  g }  C_  B  /\  A. x  e.  I  ( f `  x ) ( le `  ( R `  x )
) ( g `  x ) ) } )
128 prdsval.l . . . . . . . . . . . 12  |-  ( ph  -> 
.<_  =  { <. f ,  g >.  |  ( { f ,  g }  C_  B  /\  A. x  e.  I  ( f `  x ) ( le `  ( R `  x )
) ( g `  x ) ) } )
129128ad4antr 494 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  s  =  S )  /\  r  =  R )  /\  v  =  B )  /\  h  =  H )  ->  .<_  =  { <. f ,  g
>.  |  ( {
f ,  g } 
C_  B  /\  A. x  e.  I  (
f `  x )
( le `  ( R `  x )
) ( g `  x ) ) } )
130127, 129eqtr4d 2245 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  s  =  S )  /\  r  =  R )  /\  v  =  B )  /\  h  =  H )  ->  { <. f ,  g >.  |  ( { f ,  g }  C_  v  /\  A. x  e.  dom  r
( f `  x
) ( le `  ( r `  x
) ) ( g `
 x ) ) }  =  .<_  )
131130opeq2d 3843 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  s  =  S )  /\  r  =  R )  /\  v  =  B )  /\  h  =  H )  ->  <. ( le `  ndx ) ,  { <. f ,  g
>.  |  ( {
f ,  g } 
C_  v  /\  A. x  e.  dom  r ( f `  x ) ( le `  (
r `  x )
) ( g `  x ) ) }
>.  =  <. ( le
`  ndx ) ,  .<_  >.
)
13236fveq2d 5607 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  s  =  S )  /\  r  =  R )  ->  ( dist `  ( r `  x ) )  =  ( dist `  ( R `  x )
) )
133132oveqd 5991 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  s  =  S )  /\  r  =  R )  ->  (
( f `  x
) ( dist `  (
r `  x )
) ( g `  x ) )  =  ( ( f `  x ) ( dist `  ( R `  x
) ) ( g `
 x ) ) )
13442, 133mpteq12dv 4145 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  s  =  S )  /\  r  =  R )  ->  (
x  e.  dom  r  |->  ( ( f `  x ) ( dist `  ( r `  x
) ) ( g `
 x ) ) )  =  ( x  e.  I  |->  ( ( f `  x ) ( dist `  ( R `  x )
) ( g `  x ) ) ) )
135134adantr 276 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  s  =  S )  /\  r  =  R
)  /\  v  =  B )  ->  (
x  e.  dom  r  |->  ( ( f `  x ) ( dist `  ( r `  x
) ) ( g `
 x ) ) )  =  ( x  e.  I  |->  ( ( f `  x ) ( dist `  ( R `  x )
) ( g `  x ) ) ) )
136135rneqd 4929 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  s  =  S )  /\  r  =  R
)  /\  v  =  B )  ->  ran  ( x  e.  dom  r  |->  ( ( f `
 x ) (
dist `  ( r `  x ) ) ( g `  x ) ) )  =  ran  ( x  e.  I  |->  ( ( f `  x ) ( dist `  ( R `  x
) ) ( g `
 x ) ) ) )
137136uneq1d 3337 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  s  =  S )  /\  r  =  R
)  /\  v  =  B )  ->  ( ran  ( x  e.  dom  r  |->  ( ( f `
 x ) (
dist `  ( r `  x ) ) ( g `  x ) ) )  u.  {
0 } )  =  ( ran  ( x  e.  I  |->  ( ( f `  x ) ( dist `  ( R `  x )
) ( g `  x ) ) )  u.  { 0 } ) )
138137supeq1d 7122 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  s  =  S )  /\  r  =  R
)  /\  v  =  B )  ->  sup ( ( ran  (
x  e.  dom  r  |->  ( ( f `  x ) ( dist `  ( r `  x
) ) ( g `
 x ) ) )  u.  { 0 } ) ,  RR* ,  <  )  =  sup ( ( ran  (
x  e.  I  |->  ( ( f `  x
) ( dist `  ( R `  x )
) ( g `  x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) )
13949, 49, 138mpoeq123dv 6037 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  s  =  S )  /\  r  =  R
)  /\  v  =  B )  ->  (
f  e.  v ,  g  e.  v  |->  sup ( ( ran  (
x  e.  dom  r  |->  ( ( f `  x ) ( dist `  ( r `  x
) ) ( g `
 x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) )  =  ( f  e.  B ,  g  e.  B  |->  sup ( ( ran  ( x  e.  I  |->  ( ( f `  x ) ( dist `  ( R `  x
) ) ( g `
 x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) ) )
140139adantr 276 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  s  =  S )  /\  r  =  R )  /\  v  =  B )  /\  h  =  H )  ->  (
f  e.  v ,  g  e.  v  |->  sup ( ( ran  (
x  e.  dom  r  |->  ( ( f `  x ) ( dist `  ( r `  x
) ) ( g `
 x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) )  =  ( f  e.  B ,  g  e.  B  |->  sup ( ( ran  ( x  e.  I  |->  ( ( f `  x ) ( dist `  ( R `  x
) ) ( g `
 x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) ) )
141 prdsval.d . . . . . . . . . . . 12  |-  ( ph  ->  D  =  ( f  e.  B ,  g  e.  B  |->  sup (
( ran  ( x  e.  I  |->  ( ( f `  x ) ( dist `  ( R `  x )
) ( g `  x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) ) )
142141ad4antr 494 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  s  =  S )  /\  r  =  R )  /\  v  =  B )  /\  h  =  H )  ->  D  =  ( f  e.  B ,  g  e.  B  |->  sup ( ( ran  ( x  e.  I  |->  ( ( f `  x ) ( dist `  ( R `  x
) ) ( g `
 x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) ) )
143140, 142eqtr4d 2245 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  s  =  S )  /\  r  =  R )  /\  v  =  B )  /\  h  =  H )  ->  (
f  e.  v ,  g  e.  v  |->  sup ( ( ran  (
x  e.  dom  r  |->  ( ( f `  x ) ( dist `  ( r `  x
) ) ( g `
 x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) )  =  D )
144143opeq2d 3843 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  s  =  S )  /\  r  =  R )  /\  v  =  B )  /\  h  =  H )  ->  <. ( dist `  ndx ) ,  ( f  e.  v ,  g  e.  v 
|->  sup ( ( ran  ( x  e.  dom  r  |->  ( ( f `
 x ) (
dist `  ( r `  x ) ) ( g `  x ) ) )  u.  {
0 } ) , 
RR* ,  <  ) )
>.  =  <. ( dist `  ndx ) ,  D >. )
145119, 131, 144tpeq123d 3738 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  s  =  S )  /\  r  =  R )  /\  v  =  B )  /\  h  =  H )  ->  { <. (TopSet `  ndx ) ,  (
Xt_ `  ( TopOpen  o.  r
) ) >. ,  <. ( le `  ndx ) ,  { <. f ,  g
>.  |  ( {
f ,  g } 
C_  v  /\  A. x  e.  dom  r ( f `  x ) ( le `  (
r `  x )
) ( g `  x ) ) }
>. ,  <. ( dist `  ndx ) ,  ( f  e.  v ,  g  e.  v  |->  sup ( ( ran  (
x  e.  dom  r  |->  ( ( f `  x ) ( dist `  ( r `  x
) ) ( g `
 x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) ) >. }  =  { <. (TopSet ` 
ndx ) ,  O >. ,  <. ( le `  ndx ) ,  .<_  >. ,  <. (
dist `  ndx ) ,  D >. } )
146 simpr 110 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  s  =  S )  /\  r  =  R )  /\  v  =  B )  /\  h  =  H )  ->  h  =  H )
147146opeq2d 3843 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  s  =  S )  /\  r  =  R )  /\  v  =  B )  /\  h  =  H )  ->  <. ( Hom  `  ndx ) ,  h >.  =  <. ( Hom  `  ndx ) ,  H >. )
14861sqxpeqd 4722 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  s  =  S )  /\  r  =  R )  /\  v  =  B )  /\  h  =  H )  ->  (
v  X.  v )  =  ( B  X.  B ) )
149146oveqd 5991 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  s  =  S )  /\  r  =  R )  /\  v  =  B )  /\  h  =  H )  ->  (
( 2nd `  a
) h c )  =  ( ( 2nd `  a ) H c ) )
150146fveq1d 5605 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  s  =  S )  /\  r  =  R )  /\  v  =  B )  /\  h  =  H )  ->  (
h `  a )  =  ( H `  a ) )
15136fveq2d 5607 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  s  =  S )  /\  r  =  R )  ->  (comp `  ( r `  x
) )  =  (comp `  ( R `  x
) ) )
152151oveqd 5991 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  s  =  S )  /\  r  =  R )  ->  ( <. ( ( 1st `  a
) `  x ) ,  ( ( 2nd `  a ) `  x
) >. (comp `  (
r `  x )
) ( c `  x ) )  =  ( <. ( ( 1st `  a ) `  x
) ,  ( ( 2nd `  a ) `
 x ) >.
(comp `  ( R `  x ) ) ( c `  x ) ) )
153152oveqd 5991 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  s  =  S )  /\  r  =  R )  ->  (
( d `  x
) ( <. (
( 1st `  a
) `  x ) ,  ( ( 2nd `  a ) `  x
) >. (comp `  (
r `  x )
) ( c `  x ) ) ( e `  x ) )  =  ( ( d `  x ) ( <. ( ( 1st `  a ) `  x
) ,  ( ( 2nd `  a ) `
 x ) >.
(comp `  ( R `  x ) ) ( c `  x ) ) ( e `  x ) ) )
15442, 153mpteq12dv 4145 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  s  =  S )  /\  r  =  R )  ->  (
x  e.  dom  r  |->  ( ( d `  x ) ( <.
( ( 1st `  a
) `  x ) ,  ( ( 2nd `  a ) `  x
) >. (comp `  (
r `  x )
) ( c `  x ) ) ( e `  x ) ) )  =  ( x  e.  I  |->  ( ( d `  x
) ( <. (
( 1st `  a
) `  x ) ,  ( ( 2nd `  a ) `  x
) >. (comp `  ( R `  x )
) ( c `  x ) ) ( e `  x ) ) ) )
155154ad2antrr 488 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  s  =  S )  /\  r  =  R )  /\  v  =  B )  /\  h  =  H )  ->  (
x  e.  dom  r  |->  ( ( d `  x ) ( <.
( ( 1st `  a
) `  x ) ,  ( ( 2nd `  a ) `  x
) >. (comp `  (
r `  x )
) ( c `  x ) ) ( e `  x ) ) )  =  ( x  e.  I  |->  ( ( d `  x
) ( <. (
( 1st `  a
) `  x ) ,  ( ( 2nd `  a ) `  x
) >. (comp `  ( R `  x )
) ( c `  x ) ) ( e `  x ) ) ) )
156149, 150, 155mpoeq123dv 6037 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  s  =  S )  /\  r  =  R )  /\  v  =  B )  /\  h  =  H )  ->  (
d  e.  ( ( 2nd `  a ) h c ) ,  e  e.  ( h `
 a )  |->  ( x  e.  dom  r  |->  ( ( d `  x ) ( <.
( ( 1st `  a
) `  x ) ,  ( ( 2nd `  a ) `  x
) >. (comp `  (
r `  x )
) ( c `  x ) ) ( e `  x ) ) ) )  =  ( d  e.  ( ( 2nd `  a
) H c ) ,  e  e.  ( H `  a ) 
|->  ( x  e.  I  |->  ( ( d `  x ) ( <.
( ( 1st `  a
) `  x ) ,  ( ( 2nd `  a ) `  x
) >. (comp `  ( R `  x )
) ( c `  x ) ) ( e `  x ) ) ) ) )
157148, 61, 156mpoeq123dv 6037 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  s  =  S )  /\  r  =  R )  /\  v  =  B )  /\  h  =  H )  ->  (
a  e.  ( v  X.  v ) ,  c  e.  v  |->  ( d  e.  ( ( 2nd `  a ) h c ) ,  e  e.  ( h `
 a )  |->  ( x  e.  dom  r  |->  ( ( d `  x ) ( <.
( ( 1st `  a
) `  x ) ,  ( ( 2nd `  a ) `  x
) >. (comp `  (
r `  x )
) ( c `  x ) ) ( e `  x ) ) ) ) )  =  ( a  e.  ( B  X.  B
) ,  c  e.  B  |->  ( d  e.  ( ( 2nd `  a
) H c ) ,  e  e.  ( H `  a ) 
|->  ( x  e.  I  |->  ( ( d `  x ) ( <.
( ( 1st `  a
) `  x ) ,  ( ( 2nd `  a ) `  x
) >. (comp `  ( R `  x )
) ( c `  x ) ) ( e `  x ) ) ) ) ) )
158 prdsval.x . . . . . . . . . . . 12  |-  ( ph  -> 
.xb  =  ( a  e.  ( B  X.  B ) ,  c  e.  B  |->  ( d  e.  ( ( 2nd `  a ) H c ) ,  e  e.  ( H `  a
)  |->  ( x  e.  I  |->  ( ( d `
 x ) (
<. ( ( 1st `  a
) `  x ) ,  ( ( 2nd `  a ) `  x
) >. (comp `  ( R `  x )
) ( c `  x ) ) ( e `  x ) ) ) ) ) )
159158ad4antr 494 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  s  =  S )  /\  r  =  R )  /\  v  =  B )  /\  h  =  H )  ->  .xb  =  ( a  e.  ( B  X.  B ) ,  c  e.  B  |->  ( d  e.  ( ( 2nd `  a
) H c ) ,  e  e.  ( H `  a ) 
|->  ( x  e.  I  |->  ( ( d `  x ) ( <.
( ( 1st `  a
) `  x ) ,  ( ( 2nd `  a ) `  x
) >. (comp `  ( R `  x )
) ( c `  x ) ) ( e `  x ) ) ) ) ) )
160157, 159eqtr4d 2245 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  s  =  S )  /\  r  =  R )  /\  v  =  B )  /\  h  =  H )  ->  (
a  e.  ( v  X.  v ) ,  c  e.  v  |->  ( d  e.  ( ( 2nd `  a ) h c ) ,  e  e.  ( h `
 a )  |->  ( x  e.  dom  r  |->  ( ( d `  x ) ( <.
( ( 1st `  a
) `  x ) ,  ( ( 2nd `  a ) `  x
) >. (comp `  (
r `  x )
) ( c `  x ) ) ( e `  x ) ) ) ) )  =  .xb  )
161160opeq2d 3843 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  s  =  S )  /\  r  =  R )  /\  v  =  B )  /\  h  =  H )  ->  <. (comp ` 
ndx ) ,  ( a  e.  ( v  X.  v ) ,  c  e.  v  |->  ( d  e.  ( ( 2nd `  a ) h c ) ,  e  e.  ( h `
 a )  |->  ( x  e.  dom  r  |->  ( ( d `  x ) ( <.
( ( 1st `  a
) `  x ) ,  ( ( 2nd `  a ) `  x
) >. (comp `  (
r `  x )
) ( c `  x ) ) ( e `  x ) ) ) ) )
>.  =  <. (comp `  ndx ) ,  .xb  >. )
162147, 161preq12d 3731 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  s  =  S )  /\  r  =  R )  /\  v  =  B )  /\  h  =  H )  ->  { <. ( Hom  `  ndx ) ,  h >. ,  <. (comp ` 
ndx ) ,  ( a  e.  ( v  X.  v ) ,  c  e.  v  |->  ( d  e.  ( ( 2nd `  a ) h c ) ,  e  e.  ( h `
 a )  |->  ( x  e.  dom  r  |->  ( ( d `  x ) ( <.
( ( 1st `  a
) `  x ) ,  ( ( 2nd `  a ) `  x
) >. (comp `  (
r `  x )
) ( c `  x ) ) ( e `  x ) ) ) ) )
>. }  =  { <. ( Hom  `  ndx ) ,  H >. ,  <. (comp ` 
ndx ) ,  .xb  >. } )
163145, 162uneq12d 3339 . . . . . . 7  |-  ( ( ( ( ( ph  /\  s  =  S )  /\  r  =  R )  /\  v  =  B )  /\  h  =  H )  ->  ( { <. (TopSet `  ndx ) ,  ( Xt_ `  ( TopOpen  o.  r )
) >. ,  <. ( le `  ndx ) ,  { <. f ,  g
>.  |  ( {
f ,  g } 
C_  v  /\  A. x  e.  dom  r ( f `  x ) ( le `  (
r `  x )
) ( g `  x ) ) }
>. ,  <. ( dist `  ndx ) ,  ( f  e.  v ,  g  e.  v  |->  sup ( ( ran  (
x  e.  dom  r  |->  ( ( f `  x ) ( dist `  ( r `  x
) ) ( g `
 x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) ) >. }  u.  { <. ( Hom  `  ndx ) ,  h >. ,  <. (comp ` 
ndx ) ,  ( a  e.  ( v  X.  v ) ,  c  e.  v  |->  ( d  e.  ( ( 2nd `  a ) h c ) ,  e  e.  ( h `
 a )  |->  ( x  e.  dom  r  |->  ( ( d `  x ) ( <.
( ( 1st `  a
) `  x ) ,  ( ( 2nd `  a ) `  x
) >. (comp `  (
r `  x )
) ( c `  x ) ) ( e `  x ) ) ) ) )
>. } )  =  ( { <. (TopSet `  ndx ) ,  O >. , 
<. ( le `  ndx ) ,  .<_  >. ,  <. (
dist `  ndx ) ,  D >. }  u.  { <. ( Hom  `  ndx ) ,  H >. , 
<. (comp `  ndx ) , 
.xb  >. } ) )
164112, 163uneq12d 3339 . . . . . 6  |-  ( ( ( ( ( ph  /\  s  =  S )  /\  r  =  R )  /\  v  =  B )  /\  h  =  H )  ->  (
( { <. ( Base `  ndx ) ,  v >. ,  <. ( +g  `  ndx ) ,  ( f  e.  v ,  g  e.  v 
|->  ( x  e.  dom  r  |->  ( ( f `
 x ) ( +g  `  ( r `
 x ) ) ( g `  x
) ) ) )
>. ,  <. ( .r
`  ndx ) ,  ( f  e.  v ,  g  e.  v  |->  ( x  e.  dom  r  |->  ( ( f `  x ) ( .r
`  ( r `  x ) ) ( g `  x ) ) ) ) >. }  u.  { <. (Scalar ` 
ndx ) ,  s
>. ,  <. ( .s
`  ndx ) ,  ( f  e.  ( Base `  s ) ,  g  e.  v  |->  ( x  e.  dom  r  |->  ( f ( .s `  ( r `  x
) ) ( g `
 x ) ) ) ) >. ,  <. ( .i `  ndx ) ,  ( f  e.  v ,  g  e.  v  |->  ( s  gsumg  ( x  e.  dom  r  |->  ( ( f `  x
) ( .i `  ( r `  x
) ) ( g `
 x ) ) ) ) ) >. } )  u.  ( { <. (TopSet `  ndx ) ,  ( Xt_ `  ( TopOpen  o.  r )
) >. ,  <. ( le `  ndx ) ,  { <. f ,  g
>.  |  ( {
f ,  g } 
C_  v  /\  A. x  e.  dom  r ( f `  x ) ( le `  (
r `  x )
) ( g `  x ) ) }
>. ,  <. ( dist `  ndx ) ,  ( f  e.  v ,  g  e.  v  |->  sup ( ( ran  (
x  e.  dom  r  |->  ( ( f `  x ) ( dist `  ( r `  x
) ) ( g `
 x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) ) >. }  u.  { <. ( Hom  `  ndx ) ,  h >. ,  <. (comp ` 
ndx ) ,  ( a  e.  ( v  X.  v ) ,  c  e.  v  |->  ( d  e.  ( ( 2nd `  a ) h c ) ,  e  e.  ( h `
 a )  |->  ( x  e.  dom  r  |->  ( ( d `  x ) ( <.
( ( 1st `  a
) `  x ) ,  ( ( 2nd `  a ) `  x
) >. (comp `  (
r `  x )
) ( c `  x ) ) ( e `  x ) ) ) ) )
>. } ) )  =  ( ( { <. (
Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+  >. ,  <. ( .r `  ndx ) , 
.X.  >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) , 
.x.  >. ,  <. ( .i `  ndx ) , 
.,  >. } )  u.  ( { <. (TopSet ` 
ndx ) ,  O >. ,  <. ( le `  ndx ) ,  .<_  >. ,  <. (
dist `  ndx ) ,  D >. }  u.  { <. ( Hom  `  ndx ) ,  H >. , 
<. (comp `  ndx ) , 
.xb  >. } ) ) )
16548, 60, 164csbied2 3152 . . . . 5  |-  ( ( ( ( ph  /\  s  =  S )  /\  r  =  R
)  /\  v  =  B )  ->  [_ (
f  e.  v ,  g  e.  v  |->  X_ x  e.  dom  r ( ( f `  x
) ( Hom  `  (
r `  x )
) ( g `  x ) ) )  /  h ]_ (
( { <. ( Base `  ndx ) ,  v >. ,  <. ( +g  `  ndx ) ,  ( f  e.  v ,  g  e.  v 
|->  ( x  e.  dom  r  |->  ( ( f `
 x ) ( +g  `  ( r `
 x ) ) ( g `  x
) ) ) )
>. ,  <. ( .r
`  ndx ) ,  ( f  e.  v ,  g  e.  v  |->  ( x  e.  dom  r  |->  ( ( f `  x ) ( .r
`  ( r `  x ) ) ( g `  x ) ) ) ) >. }  u.  { <. (Scalar ` 
ndx ) ,  s
>. ,  <. ( .s
`  ndx ) ,  ( f  e.  ( Base `  s ) ,  g  e.  v  |->  ( x  e.  dom  r  |->  ( f ( .s `  ( r `  x
) ) ( g `
 x ) ) ) ) >. ,  <. ( .i `  ndx ) ,  ( f  e.  v ,  g  e.  v  |->  ( s  gsumg  ( x  e.  dom  r  |->  ( ( f `  x
) ( .i `  ( r `  x
) ) ( g `
 x ) ) ) ) ) >. } )  u.  ( { <. (TopSet `  ndx ) ,  ( Xt_ `  ( TopOpen  o.  r )
) >. ,  <. ( le `  ndx ) ,  { <. f ,  g
>.  |  ( {
f ,  g } 
C_  v  /\  A. x  e.  dom  r ( f `  x ) ( le `  (
r `  x )
) ( g `  x ) ) }
>. ,  <. ( dist `  ndx ) ,  ( f  e.  v ,  g  e.  v  |->  sup ( ( ran  (
x  e.  dom  r  |->  ( ( f `  x ) ( dist `  ( r `  x
) ) ( g `
 x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) ) >. }  u.  { <. ( Hom  `  ndx ) ,  h >. ,  <. (comp ` 
ndx ) ,  ( a  e.  ( v  X.  v ) ,  c  e.  v  |->  ( d  e.  ( ( 2nd `  a ) h c ) ,  e  e.  ( h `
 a )  |->  ( x  e.  dom  r  |->  ( ( d `  x ) ( <.
( ( 1st `  a
) `  x ) ,  ( ( 2nd `  a ) `  x
) >. (comp `  (
r `  x )
) ( c `  x ) ) ( e `  x ) ) ) ) )
>. } ) )  =  ( ( { <. (
Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+  >. ,  <. ( .r `  ndx ) , 
.X.  >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) , 
.x.  >. ,  <. ( .i `  ndx ) , 
.,  >. } )  u.  ( { <. (TopSet ` 
ndx ) ,  O >. ,  <. ( le `  ndx ) ,  .<_  >. ,  <. (
dist `  ndx ) ,  D >. }  u.  { <. ( Hom  `  ndx ) ,  H >. , 
<. (comp `  ndx ) , 
.xb  >. } ) ) )
16634, 46, 165csbied2 3152 . . . 4  |-  ( ( ( ph  /\  s  =  S )  /\  r  =  R )  ->  [_ X_ x  e.  dom  r ( Base `  ( r `  x
) )  /  v ]_ [_ ( f  e.  v ,  g  e.  v  |->  X_ x  e.  dom  r ( ( f `
 x ) ( Hom  `  ( r `  x ) ) ( g `  x ) ) )  /  h ]_ ( ( { <. (
Base `  ndx ) ,  v >. ,  <. ( +g  `  ndx ) ,  ( f  e.  v ,  g  e.  v 
|->  ( x  e.  dom  r  |->  ( ( f `
 x ) ( +g  `  ( r `
 x ) ) ( g `  x
) ) ) )
>. ,  <. ( .r
`  ndx ) ,  ( f  e.  v ,  g  e.  v  |->  ( x  e.  dom  r  |->  ( ( f `  x ) ( .r
`  ( r `  x ) ) ( g `  x ) ) ) ) >. }  u.  { <. (Scalar ` 
ndx ) ,  s
>. ,  <. ( .s
`  ndx ) ,  ( f  e.  ( Base `  s ) ,  g  e.  v  |->  ( x  e.  dom  r  |->  ( f ( .s `  ( r `  x
) ) ( g `
 x ) ) ) ) >. ,  <. ( .i `  ndx ) ,  ( f  e.  v ,  g  e.  v  |->  ( s  gsumg  ( x  e.  dom  r  |->  ( ( f `  x
) ( .i `  ( r `  x
) ) ( g `
 x ) ) ) ) ) >. } )  u.  ( { <. (TopSet `  ndx ) ,  ( Xt_ `  ( TopOpen  o.  r )
) >. ,  <. ( le `  ndx ) ,  { <. f ,  g
>.  |  ( {
f ,  g } 
C_  v  /\  A. x  e.  dom  r ( f `  x ) ( le `  (
r `  x )
) ( g `  x ) ) }
>. ,  <. ( dist `  ndx ) ,  ( f  e.  v ,  g  e.  v  |->  sup ( ( ran  (
x  e.  dom  r  |->  ( ( f `  x ) ( dist `  ( r `  x
) ) ( g `
 x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) ) >. }  u.  { <. ( Hom  `  ndx ) ,  h >. ,  <. (comp ` 
ndx ) ,  ( a  e.  ( v  X.  v ) ,  c  e.  v  |->  ( d  e.  ( ( 2nd `  a ) h c ) ,  e  e.  ( h `
 a )  |->  ( x  e.  dom  r  |->  ( ( d `  x ) ( <.
( ( 1st `  a
) `  x ) ,  ( ( 2nd `  a ) `  x
) >. (comp `  (
r `  x )
) ( c `  x ) ) ( e `  x ) ) ) ) )
>. } ) )  =  ( ( { <. (
Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+  >. ,  <. ( .r `  ndx ) , 
.X.  >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) , 
.x.  >. ,  <. ( .i `  ndx ) , 
.,  >. } )  u.  ( { <. (TopSet ` 
ndx ) ,  O >. ,  <. ( le `  ndx ) ,  .<_  >. ,  <. (
dist `  ndx ) ,  D >. }  u.  { <. ( Hom  `  ndx ) ,  H >. , 
<. (comp `  ndx ) , 
.xb  >. } ) ) )
167166anasss 399 . . 3  |-  ( (
ph  /\  ( s  =  S  /\  r  =  R ) )  ->  [_ X_ x  e.  dom  r ( Base `  (
r `  x )
)  /  v ]_ [_ ( f  e.  v ,  g  e.  v 
|->  X_ x  e.  dom  r ( ( f `
 x ) ( Hom  `  ( r `  x ) ) ( g `  x ) ) )  /  h ]_ ( ( { <. (
Base `  ndx ) ,  v >. ,  <. ( +g  `  ndx ) ,  ( f  e.  v ,  g  e.  v 
|->  ( x  e.  dom  r  |->  ( ( f `
 x ) ( +g  `  ( r `
 x ) ) ( g `  x
) ) ) )
>. ,  <. ( .r
`  ndx ) ,  ( f  e.  v ,  g  e.  v  |->  ( x  e.  dom  r  |->  ( ( f `  x ) ( .r
`  ( r `  x ) ) ( g `  x ) ) ) ) >. }  u.  { <. (Scalar ` 
ndx ) ,  s
>. ,  <. ( .s
`  ndx ) ,  ( f  e.  ( Base `  s ) ,  g  e.  v  |->  ( x  e.  dom  r  |->  ( f ( .s `  ( r `  x
) ) ( g `
 x ) ) ) ) >. ,  <. ( .i `  ndx ) ,  ( f  e.  v ,  g  e.  v  |->  ( s  gsumg  ( x  e.  dom  r  |->  ( ( f `  x
) ( .i `  ( r `  x
) ) ( g `
 x ) ) ) ) ) >. } )  u.  ( { <. (TopSet `  ndx ) ,  ( Xt_ `  ( TopOpen  o.  r )
) >. ,  <. ( le `  ndx ) ,  { <. f ,  g
>.  |  ( {
f ,  g } 
C_  v  /\  A. x  e.  dom  r ( f `  x ) ( le `  (
r `  x )
) ( g `  x ) ) }
>. ,  <. ( dist `  ndx ) ,  ( f  e.  v ,  g  e.  v  |->  sup ( ( ran  (
x  e.  dom  r  |->  ( ( f `  x ) ( dist `  ( r `  x
) ) ( g `
 x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) ) >. }  u.  { <. ( Hom  `  ndx ) ,  h >. ,  <. (comp ` 
ndx ) ,  ( a  e.  ( v  X.  v ) ,  c  e.  v  |->  ( d  e.  ( ( 2nd `  a ) h c ) ,  e  e.  ( h `
 a )  |->  ( x  e.  dom  r  |->  ( ( d `  x ) ( <.
( ( 1st `  a
) `  x ) ,  ( ( 2nd `  a ) `  x
) >. (comp `  (
r `  x )
) ( c `  x ) ) ( e `  x ) ) ) ) )
>. } ) )  =  ( ( { <. (
Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+  >. ,  <. ( .r `  ndx ) , 
.X.  >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) , 
.x.  >. ,  <. ( .i `  ndx ) , 
.,  >. } )  u.  ( { <. (TopSet ` 
ndx ) ,  O >. ,  <. ( le `  ndx ) ,  .<_  >. ,  <. (
dist `  ndx ) ,  D >. }  u.  { <. ( Hom  `  ndx ) ,  H >. , 
<. (comp `  ndx ) , 
.xb  >. } ) ) )
168 prdsval.s . . . 4  |-  ( ph  ->  S  e.  W )
169168elexd 2793 . . 3  |-  ( ph  ->  S  e.  _V )
170 prdsval.r . . . 4  |-  ( ph  ->  R  e.  Z )
171170elexd 2793 . . 3  |-  ( ph  ->  R  e.  _V )
172 dmexg 4964 . . . . . . . . . . 11  |-  ( R  e.  Z  ->  dom  R  e.  _V )
173170, 172syl 14 . . . . . . . . . 10  |-  ( ph  ->  dom  R  e.  _V )
17440, 173eqeltrrd 2287 . . . . . . . . 9  |-  ( ph  ->  I  e.  _V )
175 basfn 13057 . . . . . . . . . . 11  |-  Base  Fn  _V
176 fvexg 5622 . . . . . . . . . . . 12  |-  ( ( R  e.  Z  /\  x  e.  _V )  ->  ( R `  x
)  e.  _V )
177170, 10, 176sylancl 413 . . . . . . . . . . 11  |-  ( ph  ->  ( R `  x
)  e.  _V )
178 funfvex 5620 . . . . . . . . . . . 12  |-  ( ( Fun  Base  /\  ( R `  x )  e.  dom  Base )  ->  ( Base `  ( R `  x ) )  e. 
_V )
179178funfni 5399 . . . . . . . . . . 11  |-  ( (
Base  Fn  _V  /\  ( R `  x )  e.  _V )  ->  ( Base `  ( R `  x ) )  e. 
_V )
180175, 177, 179sylancr 414 . . . . . . . . . 10  |-  ( ph  ->  ( Base `  ( R `  x )
)  e.  _V )
181180ralrimivw 2584 . . . . . . . . 9  |-  ( ph  ->  A. x  e.  I 
( Base `  ( R `  x ) )  e. 
_V )
182 ixpexgg 6839 . . . . . . . . 9  |-  ( ( I  e.  _V  /\  A. x  e.  I  (
Base `  ( R `  x ) )  e. 
_V )  ->  X_ x  e.  I  ( Base `  ( R `  x
) )  e.  _V )
183174, 181, 182syl2anc 411 . . . . . . . 8  |-  ( ph  -> 
X_ x  e.  I 
( Base `  ( R `  x ) )  e. 
_V )
18444, 183eqeltrd 2286 . . . . . . 7  |-  ( ph  ->  B  e.  _V )
185 opexg 4293 . . . . . . 7  |-  ( ( ( Base `  ndx )  e.  NN  /\  B  e.  _V )  ->  <. ( Base `  ndx ) ,  B >.  e.  _V )
18613, 184, 185sylancr 414 . . . . . 6  |-  ( ph  -> 
<. ( Base `  ndx ) ,  B >.  e. 
_V )
187 plusgndxnn 13110 . . . . . . 7  |-  ( +g  ` 
ndx )  e.  NN
188 mpoexga 6328 . . . . . . . . 9  |-  ( ( B  e.  _V  /\  B  e.  _V )  ->  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x ) ( +g  `  ( R `  x
) ) ( g `
 x ) ) ) )  e.  _V )
189184, 184, 188syl2anc 411 . . . . . . . 8  |-  ( ph  ->  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x ) ( +g  `  ( R `  x
) ) ( g `
 x ) ) ) )  e.  _V )
19069, 189eqeltrd 2286 . . . . . . 7  |-  ( ph  ->  .+  e.  _V )
191 opexg 4293 . . . . . . 7  |-  ( ( ( +g  `  ndx )  e.  NN  /\  .+  e.  _V )  ->  <. ( +g  `  ndx ) , 
.+  >.  e.  _V )
192187, 190, 191sylancr 414 . . . . . 6  |-  ( ph  -> 
<. ( +g  `  ndx ) ,  .+  >.  e.  _V )
193 mulrslid 13131 . . . . . . . 8  |-  ( .r  = Slot  ( .r `  ndx )  /\  ( .r `  ndx )  e.  NN )
194193simpri 113 . . . . . . 7  |-  ( .r
`  ndx )  e.  NN
195 mpoexga 6328 . . . . . . . . 9  |-  ( ( B  e.  _V  /\  B  e.  _V )  ->  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x ) ( .r
`  ( R `  x ) ) ( g `  x ) ) ) )  e. 
_V )
196184, 184, 195syl2anc 411 . . . . . . . 8  |-  ( ph  ->  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x ) ( .r
`  ( R `  x ) ) ( g `  x ) ) ) )  e. 
_V )
19779, 196eqeltrd 2286 . . . . . . 7  |-  ( ph  ->  .X.  e.  _V )
198 opexg 4293 . . . . . . 7  |-  ( ( ( .r `  ndx )  e.  NN  /\  .X.  e.  _V )  ->  <. ( .r `  ndx ) , 
.X.  >.  e.  _V )
199194, 197, 198sylancr 414 . . . . . 6  |-  ( ph  -> 
<. ( .r `  ndx ) ,  .X.  >.  e.  _V )
200 tpexg 4512 . . . . . 6  |-  ( (
<. ( Base `  ndx ) ,  B >.  e. 
_V  /\  <. ( +g  ` 
ndx ) ,  .+  >.  e.  _V  /\  <. ( .r `  ndx ) , 
.X.  >.  e.  _V )  ->  { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .X.  >. }  e.  _V )
201186, 192, 199, 200syl3anc 1252 . . . . 5  |-  ( ph  ->  { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .X.  >. }  e.  _V )
202 scaslid 13152 . . . . . . . 8  |-  (Scalar  = Slot  (Scalar `  ndx )  /\  (Scalar `  ndx )  e.  NN )
203202simpri 113 . . . . . . 7  |-  (Scalar `  ndx )  e.  NN
204 opexg 4293 . . . . . . 7  |-  ( ( (Scalar `  ndx )  e.  NN  /\  S  e.  W )  ->  <. (Scalar ` 
ndx ) ,  S >.  e.  _V )
205203, 168, 204sylancr 414 . . . . . 6  |-  ( ph  -> 
<. (Scalar `  ndx ) ,  S >.  e.  _V )
206 vscaslid 13162 . . . . . . . 8  |-  ( .s  = Slot  ( .s `  ndx )  /\  ( .s `  ndx )  e.  NN )
207206simpri 113 . . . . . . 7  |-  ( .s
`  ndx )  e.  NN
208 funfvex 5620 . . . . . . . . . . . 12  |-  ( ( Fun  Base  /\  S  e. 
dom  Base )  ->  ( Base `  S )  e. 
_V )
209208funfni 5399 . . . . . . . . . . 11  |-  ( (
Base  Fn  _V  /\  S  e.  _V )  ->  ( Base `  S )  e. 
_V )
210175, 169, 209sylancr 414 . . . . . . . . . 10  |-  ( ph  ->  ( Base `  S
)  e.  _V )
21188, 210eqeltrid 2296 . . . . . . . . 9  |-  ( ph  ->  K  e.  _V )
212 mpoexga 6328 . . . . . . . . 9  |-  ( ( K  e.  _V  /\  B  e.  _V )  ->  ( f  e.  K ,  g  e.  B  |->  ( x  e.  I  |->  ( f ( .s
`  ( R `  x ) ) ( g `  x ) ) ) )  e. 
_V )
213211, 184, 212syl2anc 411 . . . . . . . 8  |-  ( ph  ->  ( f  e.  K ,  g  e.  B  |->  ( x  e.  I  |->  ( f ( .s
`  ( R `  x ) ) ( g `  x ) ) ) )  e. 
_V )
21496, 213eqeltrd 2286 . . . . . . 7  |-  ( ph  ->  .x.  e.  _V )
215 opexg 4293 . . . . . . 7  |-  ( ( ( .s `  ndx )  e.  NN  /\  .x.  e.  _V )  ->  <. ( .s `  ndx ) , 
.x.  >.  e.  _V )
216207, 214, 215sylancr 414 . . . . . 6  |-  ( ph  -> 
<. ( .s `  ndx ) ,  .x.  >.  e.  _V )
217 ipslid 13170 . . . . . . . 8  |-  ( .i  = Slot  ( .i `  ndx )  /\  ( .i `  ndx )  e.  NN )
218217simpri 113 . . . . . . 7  |-  ( .i
`  ndx )  e.  NN
219 mpoexga 6328 . . . . . . . . 9  |-  ( ( B  e.  _V  /\  B  e.  _V )  ->  ( f  e.  B ,  g  e.  B  |->  ( S  gsumg  ( x  e.  I  |->  ( ( f `  x ) ( .i
`  ( R `  x ) ) ( g `  x ) ) ) ) )  e.  _V )
220184, 184, 219syl2anc 411 . . . . . . . 8  |-  ( ph  ->  ( f  e.  B ,  g  e.  B  |->  ( S  gsumg  ( x  e.  I  |->  ( ( f `  x ) ( .i
`  ( R `  x ) ) ( g `  x ) ) ) ) )  e.  _V )
221107, 220eqeltrd 2286 . . . . . . 7  |-  ( ph  ->  .,  e.  _V )
222 opexg 4293 . . . . . . 7  |-  ( ( ( .i `  ndx )  e.  NN  /\  .,  e.  _V )  ->  <. ( .i `  ndx ) , 
.,  >.  e.  _V )
223218, 221, 222sylancr 414 . . . . . 6  |-  ( ph  -> 
<. ( .i `  ndx ) ,  .,  >.  e.  _V )
224 tpexg 4512 . . . . . 6  |-  ( (
<. (Scalar `  ndx ) ,  S >.  e.  _V  /\ 
<. ( .s `  ndx ) ,  .x.  >.  e.  _V  /\ 
<. ( .i `  ndx ) ,  .,  >.  e.  _V )  ->  { <. (Scalar ` 
ndx ) ,  S >. ,  <. ( .s `  ndx ) ,  .x.  >. ,  <. ( .i `  ndx ) ,  .,  >. }  e.  _V )
225205, 216, 223, 224syl3anc 1252 . . . . 5  |-  ( ph  ->  { <. (Scalar `  ndx ) ,  S >. , 
<. ( .s `  ndx ) ,  .x.  >. ,  <. ( .i `  ndx ) ,  .,  >. }  e.  _V )
226 unexg 4511 . . . . 5  |-  ( ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .X.  >. }  e.  _V  /\ 
{ <. (Scalar `  ndx ) ,  S >. , 
<. ( .s `  ndx ) ,  .x.  >. ,  <. ( .i `  ndx ) ,  .,  >. }  e.  _V )  ->  ( { <. (
Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+  >. ,  <. ( .r `  ndx ) , 
.X.  >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) , 
.x.  >. ,  <. ( .i `  ndx ) , 
.,  >. } )  e. 
_V )
227201, 225, 226syl2anc 411 . . . 4  |-  ( ph  ->  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+  >. ,  <. ( .r `  ndx ) , 
.X.  >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) , 
.x.  >. ,  <. ( .i `  ndx ) , 
.,  >. } )  e. 
_V )
228 tsetndxnn 13188 . . . . . . 7  |-  (TopSet `  ndx )  e.  NN
229 topnfn 13243 . . . . . . . . . . 11  |-  TopOpen  Fn  _V
230 fnfun 5394 . . . . . . . . . . 11  |-  ( TopOpen  Fn 
_V  ->  Fun  TopOpen )
231229, 230ax-mp 5 . . . . . . . . . 10  |-  Fun  TopOpen
232 cofunexg 6224 . . . . . . . . . 10  |-  ( ( Fun  TopOpen  /\  R  e.  Z )  ->  ( TopOpen  o.  R )  e. 
_V )
233231, 170, 232sylancr 414 . . . . . . . . 9  |-  ( ph  ->  ( TopOpen  o.  R )  e.  _V )
234 ptex 13263 . . . . . . . . 9  |-  ( (
TopOpen  o.  R )  e. 
_V  ->  ( Xt_ `  ( TopOpen  o.  R ) )  e.  _V )
235233, 234syl 14 . . . . . . . 8  |-  ( ph  ->  ( Xt_ `  ( TopOpen  o.  R ) )  e.  _V )
236116, 235eqeltrd 2286 . . . . . . 7  |-  ( ph  ->  O  e.  _V )
237 opexg 4293 . . . . . . 7  |-  ( ( (TopSet `  ndx )  e.  NN  /\  O  e. 
_V )  ->  <. (TopSet ` 
ndx ) ,  O >.  e.  _V )
238228, 236, 237sylancr 414 . . . . . 6  |-  ( ph  -> 
<. (TopSet `  ndx ) ,  O >.  e.  _V )
239 plendxnn 13202 . . . . . . 7  |-  ( le
`  ndx )  e.  NN
240 vex 2782 . . . . . . . . . . . 12  |-  f  e. 
_V
241 vex 2782 . . . . . . . . . . . 12  |-  g  e. 
_V
242240, 241prss 3803 . . . . . . . . . . 11  |-  ( ( f  e.  B  /\  g  e.  B )  <->  { f ,  g } 
C_  B )
243242anbi1i 458 . . . . . . . . . 10  |-  ( ( ( f  e.  B  /\  g  e.  B
)  /\  A. x  e.  I  ( f `  x ) ( le
`  ( R `  x ) ) ( g `  x ) )  <->  ( { f ,  g }  C_  B  /\  A. x  e.  I  ( f `  x ) ( le
`  ( R `  x ) ) ( g `  x ) ) )
244243opabbii 4130 . . . . . . . . 9  |-  { <. f ,  g >.  |  ( ( f  e.  B  /\  g  e.  B
)  /\  A. x  e.  I  ( f `  x ) ( le
`  ( R `  x ) ) ( g `  x ) ) }  =  { <. f ,  g >.  |  ( { f ,  g }  C_  B  /\  A. x  e.  I  ( f `  x ) ( le
`  ( R `  x ) ) ( g `  x ) ) }
245 xpexg 4810 . . . . . . . . . . 11  |-  ( ( B  e.  _V  /\  B  e.  _V )  ->  ( B  X.  B
)  e.  _V )
246184, 184, 245syl2anc 411 . . . . . . . . . 10  |-  ( ph  ->  ( B  X.  B
)  e.  _V )
247 opabssxp 4770 . . . . . . . . . . 11  |-  { <. f ,  g >.  |  ( ( f  e.  B  /\  g  e.  B
)  /\  A. x  e.  I  ( f `  x ) ( le
`  ( R `  x ) ) ( g `  x ) ) }  C_  ( B  X.  B )
248247a1i 9 . . . . . . . . . 10  |-  ( ph  ->  { <. f ,  g
>.  |  ( (
f  e.  B  /\  g  e.  B )  /\  A. x  e.  I 
( f `  x
) ( le `  ( R `  x ) ) ( g `  x ) ) } 
C_  ( B  X.  B ) )
249246, 248ssexd 4203 . . . . . . . . 9  |-  ( ph  ->  { <. f ,  g
>.  |  ( (
f  e.  B  /\  g  e.  B )  /\  A. x  e.  I 
( f `  x
) ( le `  ( R `  x ) ) ( g `  x ) ) }  e.  _V )
250244, 249eqeltrrid 2297 . . . . . . . 8  |-  ( ph  ->  { <. f ,  g
>.  |  ( {
f ,  g } 
C_  B  /\  A. x  e.  I  (
f `  x )
( le `  ( R `  x )
) ( g `  x ) ) }  e.  _V )
251128, 250eqeltrd 2286 . . . . . . 7  |-  ( ph  -> 
.<_  e.  _V )
252 opexg 4293 . . . . . . 7  |-  ( ( ( le `  ndx )  e.  NN  /\  .<_  e. 
_V )  ->  <. ( le `  ndx ) , 
.<_  >.  e.  _V )
253239, 251, 252sylancr 414 . . . . . 6  |-  ( ph  -> 
<. ( le `  ndx ) ,  .<_  >.  e.  _V )
254 dsndxnn 13217 . . . . . . 7  |-  ( dist `  ndx )  e.  NN
255 mpoexga 6328 . . . . . . . . 9  |-  ( ( B  e.  _V  /\  B  e.  _V )  ->  ( f  e.  B ,  g  e.  B  |->  sup ( ( ran  ( x  e.  I  |->  ( ( f `  x ) ( dist `  ( R `  x
) ) ( g `
 x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) )  e. 
_V )
256184, 184, 255syl2anc 411 . . . . . . . 8  |-  ( ph  ->  ( f  e.  B ,  g  e.  B  |->  sup ( ( ran  ( x  e.  I  |->  ( ( f `  x ) ( dist `  ( R `  x
) ) ( g `
 x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) )  e. 
_V )
257141, 256eqeltrd 2286 . . . . . . 7  |-  ( ph  ->  D  e.  _V )
258 opexg 4293 . . . . . . 7  |-  ( ( ( dist `  ndx )  e.  NN  /\  D  e.  _V )  ->  <. ( dist `  ndx ) ,  D >.  e.  _V )
259254, 257, 258sylancr 414 . . . . . 6  |-  ( ph  -> 
<. ( dist `  ndx ) ,  D >.  e. 
_V )
260 tpexg 4512 . . . . . 6  |-  ( (
<. (TopSet `  ndx ) ,  O >.  e.  _V  /\ 
<. ( le `  ndx ) ,  .<_  >.  e.  _V  /\ 
<. ( dist `  ndx ) ,  D >.  e. 
_V )  ->  { <. (TopSet `  ndx ) ,  O >. ,  <. ( le `  ndx ) ,  .<_  >. ,  <. (
dist `  ndx ) ,  D >. }  e.  _V )
261238, 253, 259, 260syl3anc 1252 . . . . 5  |-  ( ph  ->  { <. (TopSet `  ndx ) ,  O >. , 
<. ( le `  ndx ) ,  .<_  >. ,  <. (
dist `  ndx ) ,  D >. }  e.  _V )
262 homslid 13234 . . . . . . . 8  |-  ( Hom  = Slot  ( Hom  `  ndx )  /\  ( Hom  `  ndx )  e.  NN )
263262simpri 113 . . . . . . 7  |-  ( Hom  `  ndx )  e.  NN
264 mpoexga 6328 . . . . . . . . 9  |-  ( ( B  e.  _V  /\  B  e.  _V )  ->  ( f  e.  B ,  g  e.  B  |-> 
X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) )  e.  _V )
265184, 184, 264syl2anc 411 . . . . . . . 8  |-  ( ph  ->  ( f  e.  B ,  g  e.  B  |-> 
X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) )  e.  _V )
26658, 265eqeltrd 2286 . . . . . . 7  |-  ( ph  ->  H  e.  _V )
267 opexg 4293 . . . . . . 7  |-  ( ( ( Hom  `  ndx )  e.  NN  /\  H  e.  _V )  ->  <. ( Hom  `  ndx ) ,  H >.  e.  _V )
268263, 266, 267sylancr 414 . . . . . 6  |-  ( ph  -> 
<. ( Hom  `  ndx ) ,  H >.  e. 
_V )
269 ccoslid 13237 . . . . . . . 8  |-  (comp  = Slot  (comp `  ndx )  /\  (comp `  ndx )  e.  NN )
270269simpri 113 . . . . . . 7  |-  (comp `  ndx )  e.  NN
271 mpoexga 6328 . . . . . . . . 9  |-  ( ( ( B  X.  B
)  e.  _V  /\  B  e.  _V )  ->  ( a  e.  ( B  X.  B ) ,  c  e.  B  |->  ( d  e.  ( ( 2nd `  a
) H c ) ,  e  e.  ( H `  a ) 
|->  ( x  e.  I  |->  ( ( d `  x ) ( <.
( ( 1st `  a
) `  x ) ,  ( ( 2nd `  a ) `  x
) >. (comp `  ( R `  x )
) ( c `  x ) ) ( e `  x ) ) ) ) )  e.  _V )
272246, 184, 271syl2anc 411 . . . . . . . 8  |-  ( ph  ->  ( a  e.  ( B  X.  B ) ,  c  e.  B  |->  ( d  e.  ( ( 2nd `  a
) H c ) ,  e  e.  ( H `  a ) 
|->  ( x  e.  I  |->  ( ( d `  x ) ( <.
( ( 1st `  a
) `  x ) ,  ( ( 2nd `  a ) `  x
) >. (comp `  ( R `  x )
) ( c `  x ) ) ( e `  x ) ) ) ) )  e.  _V )
273158, 272eqeltrd 2286 . . . . . . 7  |-  ( ph  -> 
.xb  e.  _V )
274 opexg 4293 . . . . . . 7  |-  ( ( (comp `  ndx )  e.  NN  /\  .xb  e.  _V )  ->  <. (comp ` 
ndx ) ,  .xb  >.  e.  _V )
275270, 273, 274sylancr 414 . . . . . 6  |-  ( ph  -> 
<. (comp `  ndx ) , 
.xb  >.  e.  _V )
276 prexg 4274 . . . . . 6  |-  ( (
<. ( Hom  `  ndx ) ,  H >.  e. 
_V  /\  <. (comp `  ndx ) ,  .xb  >.  e.  _V )  ->  { <. ( Hom  `  ndx ) ,  H >. ,  <. (comp ` 
ndx ) ,  .xb  >. }  e.  _V )
277268, 275, 276syl2anc 411 . . . . 5  |-  ( ph  ->  { <. ( Hom  `  ndx ) ,  H >. , 
<. (comp `  ndx ) , 
.xb  >. }  e.  _V )
278 unexg 4511 . . . . 5  |-  ( ( { <. (TopSet `  ndx ) ,  O >. , 
<. ( le `  ndx ) ,  .<_  >. ,  <. (
dist `  ndx ) ,  D >. }  e.  _V  /\ 
{ <. ( Hom  `  ndx ) ,  H >. , 
<. (comp `  ndx ) , 
.xb  >. }  e.  _V )  ->  ( { <. (TopSet `  ndx ) ,  O >. ,  <. ( le `  ndx ) ,  .<_  >. ,  <. (
dist `  ndx ) ,  D >. }  u.  { <. ( Hom  `  ndx ) ,  H >. , 
<. (comp `  ndx ) , 
.xb  >. } )  e. 
_V )
279261, 277, 278syl2anc 411 . . . 4  |-  ( ph  ->  ( { <. (TopSet ` 
ndx ) ,  O >. ,  <. ( le `  ndx ) ,  .<_  >. ,  <. (
dist `  ndx ) ,  D >. }  u.  { <. ( Hom  `  ndx ) ,  H >. , 
<. (comp `  ndx ) , 
.xb  >. } )  e. 
_V )
280 unexg 4511 . . . 4  |-  ( ( ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+  >. ,  <. ( .r `  ndx ) , 
.X.  >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) , 
.x.  >. ,  <. ( .i `  ndx ) , 
.,  >. } )  e. 
_V  /\  ( { <. (TopSet `  ndx ) ,  O >. ,  <. ( le `  ndx ) , 
.<_  >. ,  <. ( dist `  ndx ) ,  D >. }  u.  { <. ( Hom  `  ndx ) ,  H >. , 
<. (comp `  ndx ) , 
.xb  >. } )  e. 
_V )  ->  (
( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+  >. ,  <. ( .r `  ndx ) , 
.X.  >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) , 
.x.  >. ,  <. ( .i `  ndx ) , 
.,  >. } )  u.  ( { <. (TopSet ` 
ndx ) ,  O >. ,  <. ( le `  ndx ) ,  .<_  >. ,  <. (
dist `  ndx ) ,  D >. }  u.  { <. ( Hom  `  ndx ) ,  H >. , 
<. (comp `  ndx ) , 
.xb  >. } ) )  e.  _V )
281227, 279, 280syl2anc 411 . . 3  |-  ( ph  ->  ( ( { <. (
Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+  >. ,  <. ( .r `  ndx ) , 
.X.  >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) , 
.x.  >. ,  <. ( .i `  ndx ) , 
.,  >. } )  u.  ( { <. (TopSet ` 
ndx ) ,  O >. ,  <. ( le `  ndx ) ,  .<_  >. ,  <. (
dist `  ndx ) ,  D >. }  u.  { <. ( Hom  `  ndx ) ,  H >. , 
<. (comp `  ndx ) , 
.xb  >. } ) )  e.  _V )
2823, 167, 169, 171, 281ovmpod 6103 . 2  |-  ( ph  ->  ( S X_s R )  =  ( ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+  >. ,  <. ( .r `  ndx ) , 
.X.  >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) , 
.x.  >. ,  <. ( .i `  ndx ) , 
.,  >. } )  u.  ( { <. (TopSet ` 
ndx ) ,  O >. ,  <. ( le `  ndx ) ,  .<_  >. ,  <. (
dist `  ndx ) ,  D >. }  u.  { <. ( Hom  `  ndx ) ,  H >. , 
<. (comp `  ndx ) , 
.xb  >. } ) ) )
2831, 282eqtrid 2254 1  |-  ( ph  ->  P  =  ( ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .X.  >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) , 
.x.  >. ,  <. ( .i `  ndx ) , 
.,  >. } )  u.  ( { <. (TopSet ` 
ndx ) ,  O >. ,  <. ( le `  ndx ) ,  .<_  >. ,  <. (
dist `  ndx ) ,  D >. }  u.  { <. ( Hom  `  ndx ) ,  H >. , 
<. (comp `  ndx ) , 
.xb  >. } ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1375   T. wtru 1376    e. wcel 2180   A.wral 2488   _Vcvv 2779   [_csb 3104    u. cun 3175    C_ wss 3177   {csn 3646   {cpr 3647   {ctp 3648   <.cop 3649   U.cuni 3867   U_ciun 3944   class class class wbr 4062   {copab 4123    |-> cmpt 4124    X. cxp 4694   dom cdm 4696   ran crn 4697    o. ccom 4700   Fun wfun 5288    Fn wfn 5289   ` cfv 5294  (class class class)co 5974    e. cmpo 5976   1stc1st 6254   2ndc2nd 6255    ^m cmap 6765   X_cixp 6815   supcsup 7117   0cc0 7967   RR*cxr 8148    < clt 8149   NNcn 9078   ndxcnx 12995  Slot cslot 12997   Basecbs 12998   +g cplusg 13076   .rcmulr 13077  Scalarcsca 13079   .scvsca 13080   .icip 13081  TopSetcts 13082   lecple 13083   distcds 13085   Hom chom 13087  compcco 13088   TopOpenctopn 13239   Xt_cpt 13254    gsumg cgsu 13256   X_scprds 13264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-cnre 8078
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-ral 2493  df-rex 2494  df-reu 2495  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-tp 3654  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-map 6767  df-ixp 6816  df-sup 7119  df-sub 8287  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-5 9140  df-6 9141  df-7 9142  df-8 9143  df-9 9144  df-n0 9338  df-dec 9547  df-ndx 13001  df-slot 13002  df-base 13004  df-plusg 13089  df-mulr 13090  df-sca 13092  df-vsca 13093  df-ip 13094  df-tset 13095  df-ple 13096  df-ds 13098  df-hom 13100  df-cco 13101  df-rest 13240  df-topn 13241  df-topgen 13259  df-pt 13260  df-prds 13266
This theorem is referenced by:  prdsbaslemss  13273  prdssca  13274  prdsbas  13275  prdsplusg  13276  prdsmulr  13277
  Copyright terms: Public domain W3C validator