| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > plendxnn | GIF version | ||
| Description: The index value of the order slot is a positive integer. This property should be ensured for every concrete coding because otherwise it could not be used in an extensible structure (slots must be positive integers). (Contributed by AV, 30-Oct-2024.) |
| Ref | Expression |
|---|---|
| plendxnn | ⊢ (le‘ndx) ∈ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | plendx 13228 | . 2 ⊢ (le‘ndx) = ;10 | |
| 2 | 10nn 9589 | . 2 ⊢ ;10 ∈ ℕ | |
| 3 | 1, 2 | eqeltri 2302 | 1 ⊢ (le‘ndx) ∈ ℕ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2200 ‘cfv 5317 0cc0 7995 1c1 7996 ℕcn 9106 ;cdc 9574 ndxcnx 13024 lecple 13112 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-1rid 8102 ax-0id 8103 ax-cnre 8106 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-iota 5277 df-fun 5319 df-fv 5325 df-ov 6003 df-inn 9107 df-2 9165 df-3 9166 df-4 9167 df-5 9168 df-6 9169 df-7 9170 df-8 9171 df-9 9172 df-dec 9575 df-ndx 13030 df-slot 13031 df-ple 13125 |
| This theorem is referenced by: prdsex 13297 prdsval 13301 znval 14594 znbaslemnn 14597 |
| Copyright terms: Public domain | W3C validator |