| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > plendxnn | GIF version | ||
| Description: The index value of the order slot is a positive integer. This property should be ensured for every concrete coding because otherwise it could not be used in an extensible structure (slots must be positive integers). (Contributed by AV, 30-Oct-2024.) |
| Ref | Expression |
|---|---|
| plendxnn | ⊢ (le‘ndx) ∈ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | plendx 12888 | . 2 ⊢ (le‘ndx) = ;10 | |
| 2 | 10nn 9475 | . 2 ⊢ ;10 ∈ ℕ | |
| 3 | 1, 2 | eqeltri 2269 | 1 ⊢ (le‘ndx) ∈ ℕ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 ‘cfv 5259 0cc0 7882 1c1 7883 ℕcn 8993 ;cdc 9460 ndxcnx 12686 lecple 12773 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-cnex 7973 ax-resscn 7974 ax-1cn 7975 ax-1re 7976 ax-icn 7977 ax-addcl 7978 ax-addrcl 7979 ax-mulcl 7980 ax-mulcom 7983 ax-addass 7984 ax-mulass 7985 ax-distr 7986 ax-1rid 7989 ax-0id 7990 ax-cnre 7993 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-iota 5220 df-fun 5261 df-fv 5267 df-ov 5926 df-inn 8994 df-2 9052 df-3 9053 df-4 9054 df-5 9055 df-6 9056 df-7 9057 df-8 9058 df-9 9059 df-dec 9461 df-ndx 12692 df-slot 12693 df-ple 12786 |
| This theorem is referenced by: prdsex 12957 prdsval 12961 znval 14218 znbaslemnn 14221 |
| Copyright terms: Public domain | W3C validator |