ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  plendxnn GIF version

Theorem plendxnn 12679
Description: The index value of the order slot is a positive integer. This property should be ensured for every concrete coding because otherwise it could not be used in an extensible structure (slots must be positive integers). (Contributed by AV, 30-Oct-2024.)
Assertion
Ref Expression
plendxnn (le‘ndx) ∈ ℕ

Proof of Theorem plendxnn
StepHypRef Expression
1 plendx 12676 . 2 (le‘ndx) = 10
2 10nn 9416 . 2 10 ∈ ℕ
31, 2eqeltri 2261 1 (le‘ndx) ∈ ℕ
Colors of variables: wff set class
Syntax hints:  wcel 2159  cfv 5230  0cc0 7828  1c1 7829  cn 8936  cdc 9401  ndxcnx 12476  lecple 12561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2161  ax-14 2162  ax-ext 2170  ax-sep 4135  ax-pow 4188  ax-pr 4223  ax-un 4447  ax-cnex 7919  ax-resscn 7920  ax-1cn 7921  ax-1re 7922  ax-icn 7923  ax-addcl 7924  ax-addrcl 7925  ax-mulcl 7926  ax-mulcom 7929  ax-addass 7930  ax-mulass 7931  ax-distr 7932  ax-1rid 7935  ax-0id 7936  ax-cnre 7939
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-eu 2040  df-mo 2041  df-clab 2175  df-cleq 2181  df-clel 2184  df-nfc 2320  df-ral 2472  df-rex 2473  df-rab 2476  df-v 2753  df-sbc 2977  df-un 3147  df-in 3149  df-ss 3156  df-pw 3591  df-sn 3612  df-pr 3613  df-op 3615  df-uni 3824  df-int 3859  df-br 4018  df-opab 4079  df-mpt 4080  df-id 4307  df-xp 4646  df-rel 4647  df-cnv 4648  df-co 4649  df-dm 4650  df-rn 4651  df-res 4652  df-iota 5192  df-fun 5232  df-fv 5238  df-ov 5893  df-inn 8937  df-2 8995  df-3 8996  df-4 8997  df-5 8998  df-6 8999  df-7 9000  df-8 9001  df-9 9002  df-dec 9402  df-ndx 12482  df-slot 12483  df-ple 12574
This theorem is referenced by:  prdsex  12739
  Copyright terms: Public domain W3C validator