ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  znbaslemnn Unicode version

Theorem znbaslemnn 14516
Description: Lemma for znbas 14521. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by Mario Carneiro, 14-Aug-2015.) (Revised by AV, 13-Jun-2019.) (Revised by AV, 9-Sep-2021.) (Revised by AV, 3-Nov-2024.)
Hypotheses
Ref Expression
znval2.s  |-  S  =  (RSpan ` ring )
znval2.u  |-  U  =  (ring 
/.s  (ring ~QG  ( S `  { N } ) ) )
znval2.y  |-  Y  =  (ℤ/n `  N )
znbaslem.e  |-  E  = Slot  ( E `  ndx )
znbaslemnn.nn  |-  ( E `
 ndx )  e.  NN
znbaslem.n  |-  ( E `
 ndx )  =/=  ( le `  ndx )
Assertion
Ref Expression
znbaslemnn  |-  ( N  e.  NN0  ->  ( E `
 U )  =  ( E `  Y
) )

Proof of Theorem znbaslemnn
StepHypRef Expression
1 znval2.u . . . 4  |-  U  =  (ring 
/.s  (ring ~QG  ( S `  { N } ) ) )
2 zringring 14470 . . . . 5  |-ring  e.  Ring
3 znval2.s . . . . . . . 8  |-  S  =  (RSpan ` ring )
4 rspex 14351 . . . . . . . . 9  |-  (ring  e.  Ring  -> 
(RSpan ` ring )  e.  _V )
52, 4ax-mp 5 . . . . . . . 8  |-  (RSpan ` ring )  e.  _V
63, 5eqeltri 2280 . . . . . . 7  |-  S  e. 
_V
7 snexg 4244 . . . . . . 7  |-  ( N  e.  NN0  ->  { N }  e.  _V )
8 fvexg 5618 . . . . . . 7  |-  ( ( S  e.  _V  /\  { N }  e.  _V )  ->  ( S `  { N } )  e. 
_V )
96, 7, 8sylancr 414 . . . . . 6  |-  ( N  e.  NN0  ->  ( S `
 { N }
)  e.  _V )
10 eqgex 13672 . . . . . 6  |-  ( (ring  e. 
Ring  /\  ( S `  { N } )  e. 
_V )  ->  (ring ~QG  ( S `  { N } ) )  e. 
_V )
112, 9, 10sylancr 414 . . . . 5  |-  ( N  e.  NN0  ->  (ring ~QG  ( S `  { N } ) )  e. 
_V )
12 qusex 13272 . . . . 5  |-  ( (ring  e. 
Ring  /\  (ring ~QG  ( S `  { N } ) )  e. 
_V )  ->  (ring  /.s  (ring ~QG  ( S `  { N } ) ) )  e.  _V )
132, 11, 12sylancr 414 . . . 4  |-  ( N  e.  NN0  ->  (ring  /.s  (ring ~QG  ( S `  { N } ) ) )  e.  _V )
141, 13eqeltrid 2294 . . 3  |-  ( N  e.  NN0  ->  U  e. 
_V )
15 znval2.y . . . . . 6  |-  Y  =  (ℤ/n `  N )
16 eqid 2207 . . . . . 6  |-  ( ( ZRHom `  U )  |`  if ( N  =  0 ,  ZZ , 
( 0..^ N ) ) )  =  ( ( ZRHom `  U
)  |`  if ( N  =  0 ,  ZZ ,  ( 0..^ N ) ) )
17 eqid 2207 . . . . . 6  |-  if ( N  =  0 ,  ZZ ,  ( 0..^ N ) )  =  if ( N  =  0 ,  ZZ , 
( 0..^ N ) )
18 eqid 2207 . . . . . 6  |-  ( ( ( ( ZRHom `  U )  |`  if ( N  =  0 ,  ZZ ,  ( 0..^ N ) ) )  o.  <_  )  o.  `' ( ( ZRHom `  U )  |`  if ( N  =  0 ,  ZZ ,  ( 0..^ N ) ) ) )  =  ( ( ( ( ZRHom `  U )  |`  if ( N  =  0 ,  ZZ ,  ( 0..^ N ) ) )  o.  <_  )  o.  `' ( ( ZRHom `  U )  |`  if ( N  =  0 ,  ZZ ,  ( 0..^ N ) ) ) )
193, 1, 15, 16, 17, 18znval 14513 . . . . 5  |-  ( N  e.  NN0  ->  Y  =  ( U sSet  <. ( le `  ndx ) ,  ( ( ( ( ZRHom `  U )  |`  if ( N  =  0 ,  ZZ , 
( 0..^ N ) ) )  o.  <_  )  o.  `' ( ( ZRHom `  U )  |`  if ( N  =  0 ,  ZZ , 
( 0..^ N ) ) ) ) >.
) )
20 plendxnn 13150 . . . . . . 7  |-  ( le
`  ndx )  e.  NN
2120a1i 9 . . . . . 6  |-  ( N  e.  NN0  ->  ( le
`  ndx )  e.  NN )
22 eqid 2207 . . . . . . . . . . 11  |-  ( ZRHom `  U )  =  ( ZRHom `  U )
2322zrhex 14498 . . . . . . . . . 10  |-  ( U  e.  _V  ->  ( ZRHom `  U )  e. 
_V )
2414, 23syl 14 . . . . . . . . 9  |-  ( N  e.  NN0  ->  ( ZRHom `  U )  e.  _V )
25 resexg 5018 . . . . . . . . 9  |-  ( ( ZRHom `  U )  e.  _V  ->  ( ( ZRHom `  U )  |`  if ( N  =  0 ,  ZZ ,  ( 0..^ N ) ) )  e.  _V )
2624, 25syl 14 . . . . . . . 8  |-  ( N  e.  NN0  ->  ( ( ZRHom `  U )  |`  if ( N  =  0 ,  ZZ , 
( 0..^ N ) ) )  e.  _V )
27 xrex 10013 . . . . . . . . . 10  |-  RR*  e.  _V
2827, 27xpex 4808 . . . . . . . . 9  |-  ( RR*  X. 
RR* )  e.  _V
29 lerelxr 8170 . . . . . . . . 9  |-  <_  C_  ( RR*  X.  RR* )
3028, 29ssexi 4198 . . . . . . . 8  |-  <_  e.  _V
31 coexg 5246 . . . . . . . 8  |-  ( ( ( ( ZRHom `  U )  |`  if ( N  =  0 ,  ZZ ,  ( 0..^ N ) ) )  e.  _V  /\  <_  e. 
_V )  ->  (
( ( ZRHom `  U )  |`  if ( N  =  0 ,  ZZ ,  ( 0..^ N ) ) )  o.  <_  )  e.  _V )
3226, 30, 31sylancl 413 . . . . . . 7  |-  ( N  e.  NN0  ->  ( ( ( ZRHom `  U
)  |`  if ( N  =  0 ,  ZZ ,  ( 0..^ N ) ) )  o. 
<_  )  e.  _V )
33 cnvexg 5239 . . . . . . . 8  |-  ( ( ( ZRHom `  U
)  |`  if ( N  =  0 ,  ZZ ,  ( 0..^ N ) ) )  e. 
_V  ->  `' ( ( ZRHom `  U )  |`  if ( N  =  0 ,  ZZ , 
( 0..^ N ) ) )  e.  _V )
3426, 33syl 14 . . . . . . 7  |-  ( N  e.  NN0  ->  `' ( ( ZRHom `  U
)  |`  if ( N  =  0 ,  ZZ ,  ( 0..^ N ) ) )  e. 
_V )
35 coexg 5246 . . . . . . 7  |-  ( ( ( ( ( ZRHom `  U )  |`  if ( N  =  0 ,  ZZ ,  ( 0..^ N ) ) )  o.  <_  )  e.  _V  /\  `' ( ( ZRHom `  U )  |`  if ( N  =  0 ,  ZZ , 
( 0..^ N ) ) )  e.  _V )  ->  ( ( ( ( ZRHom `  U
)  |`  if ( N  =  0 ,  ZZ ,  ( 0..^ N ) ) )  o. 
<_  )  o.  `' ( ( ZRHom `  U )  |`  if ( N  =  0 ,  ZZ ,  ( 0..^ N ) ) ) )  e.  _V )
3632, 34, 35syl2anc 411 . . . . . 6  |-  ( N  e.  NN0  ->  ( ( ( ( ZRHom `  U )  |`  if ( N  =  0 ,  ZZ ,  ( 0..^ N ) ) )  o.  <_  )  o.  `' ( ( ZRHom `  U )  |`  if ( N  =  0 ,  ZZ ,  ( 0..^ N ) ) ) )  e.  _V )
37 setsex 12979 . . . . . 6  |-  ( ( U  e.  _V  /\  ( le `  ndx )  e.  NN  /\  ( ( ( ( ZRHom `  U )  |`  if ( N  =  0 ,  ZZ ,  ( 0..^ N ) ) )  o.  <_  )  o.  `' ( ( ZRHom `  U )  |`  if ( N  =  0 ,  ZZ ,  ( 0..^ N ) ) ) )  e.  _V )  ->  ( U sSet  <. ( le `  ndx ) ,  ( ( ( ( ZRHom `  U )  |`  if ( N  =  0 ,  ZZ , 
( 0..^ N ) ) )  o.  <_  )  o.  `' ( ( ZRHom `  U )  |`  if ( N  =  0 ,  ZZ , 
( 0..^ N ) ) ) ) >.
)  e.  _V )
3814, 21, 36, 37syl3anc 1250 . . . . 5  |-  ( N  e.  NN0  ->  ( U sSet  <. ( le `  ndx ) ,  ( (
( ( ZRHom `  U )  |`  if ( N  =  0 ,  ZZ ,  ( 0..^ N ) ) )  o.  <_  )  o.  `' ( ( ZRHom `  U )  |`  if ( N  =  0 ,  ZZ ,  ( 0..^ N ) ) ) ) >. )  e.  _V )
3919, 38eqeltrd 2284 . . . 4  |-  ( N  e.  NN0  ->  Y  e. 
_V )
40 pleslid 13149 . . . . 5  |-  ( le  = Slot  ( le `  ndx )  /\  ( le `  ndx )  e.  NN )
4140slotex 12974 . . . 4  |-  ( Y  e.  _V  ->  ( le `  Y )  e. 
_V )
4239, 41syl 14 . . 3  |-  ( N  e.  NN0  ->  ( le
`  Y )  e. 
_V )
43 znbaslem.e . . . . 5  |-  E  = Slot  ( E `  ndx )
44 znbaslemnn.nn . . . . 5  |-  ( E `
 ndx )  e.  NN
4543, 44ndxslid 12972 . . . 4  |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )
46 znbaslem.n . . . 4  |-  ( E `
 ndx )  =/=  ( le `  ndx )
4745, 46, 20setsslnid 12999 . . 3  |-  ( ( U  e.  _V  /\  ( le `  Y )  e.  _V )  -> 
( E `  U
)  =  ( E `
 ( U sSet  <. ( le `  ndx ) ,  ( le `  Y ) >. )
) )
4814, 42, 47syl2anc 411 . 2  |-  ( N  e.  NN0  ->  ( E `
 U )  =  ( E `  ( U sSet  <. ( le `  ndx ) ,  ( le
`  Y ) >.
) ) )
49 eqid 2207 . . . 4  |-  ( le
`  Y )  =  ( le `  Y
)
503, 1, 15, 49znval2 14515 . . 3  |-  ( N  e.  NN0  ->  Y  =  ( U sSet  <. ( le `  ndx ) ,  ( le `  Y
) >. ) )
5150fveq2d 5603 . 2  |-  ( N  e.  NN0  ->  ( E `
 Y )  =  ( E `  ( U sSet  <. ( le `  ndx ) ,  ( le
`  Y ) >.
) ) )
5248, 51eqtr4d 2243 1  |-  ( N  e.  NN0  ->  ( E `
 U )  =  ( E `  Y
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2178    =/= wne 2378   _Vcvv 2776   ifcif 3579   {csn 3643   <.cop 3646    X. cxp 4691   `'ccnv 4692    |` cres 4695    o. ccom 4697   ` cfv 5290  (class class class)co 5967   0cc0 7960   RR*cxr 8141    <_ cle 8143   NNcn 9071   NN0cn0 9330   ZZcz 9407  ..^cfzo 10299   ndxcnx 12944   sSet csts 12945  Slot cslot 12946   lecple 13031    /.s cqus 13247   ~QG cqg 13620   Ringcrg 13873  RSpancrsp 14345  ℤringczring 14467   ZRHomczrh 14488  ℤ/nczn 14490
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-addf 8082  ax-mulf 8083
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-tp 3651  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-ec 6645  df-map 6760  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-5 9133  df-6 9134  df-7 9135  df-8 9136  df-9 9137  df-n0 9331  df-z 9408  df-dec 9540  df-uz 9684  df-rp 9811  df-fz 10166  df-cj 11268  df-abs 11425  df-struct 12949  df-ndx 12950  df-slot 12951  df-base 12953  df-sets 12954  df-iress 12955  df-plusg 13037  df-mulr 13038  df-starv 13039  df-sca 13040  df-vsca 13041  df-ip 13042  df-tset 13043  df-ple 13044  df-ds 13046  df-unif 13047  df-0g 13205  df-topgen 13207  df-iimas 13249  df-qus 13250  df-mgm 13303  df-sgrp 13349  df-mnd 13364  df-grp 13450  df-minusg 13451  df-subg 13621  df-eqg 13623  df-cmn 13737  df-mgp 13798  df-ur 13837  df-ring 13875  df-cring 13876  df-rhm 14029  df-subrg 14096  df-lsp 14264  df-sra 14312  df-rgmod 14313  df-rsp 14347  df-bl 14423  df-mopn 14424  df-fg 14426  df-metu 14427  df-cnfld 14434  df-zring 14468  df-zrh 14491  df-zn 14493
This theorem is referenced by:  znbas2  14517  znadd  14518  znmul  14519
  Copyright terms: Public domain W3C validator