| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > znbaslemnn | Unicode version | ||
| Description: Lemma for znbas 14439. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by Mario Carneiro, 14-Aug-2015.) (Revised by AV, 13-Jun-2019.) (Revised by AV, 9-Sep-2021.) (Revised by AV, 3-Nov-2024.) |
| Ref | Expression |
|---|---|
| znval2.s |
|
| znval2.u |
|
| znval2.y |
|
| znbaslem.e |
|
| znbaslemnn.nn |
|
| znbaslem.n |
|
| Ref | Expression |
|---|---|
| znbaslemnn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | znval2.u |
. . . 4
| |
| 2 | zringring 14388 |
. . . . 5
| |
| 3 | znval2.s |
. . . . . . . 8
| |
| 4 | rspex 14269 |
. . . . . . . . 9
| |
| 5 | 2, 4 | ax-mp 5 |
. . . . . . . 8
|
| 6 | 3, 5 | eqeltri 2278 |
. . . . . . 7
|
| 7 | snexg 4229 |
. . . . . . 7
| |
| 8 | fvexg 5597 |
. . . . . . 7
| |
| 9 | 6, 7, 8 | sylancr 414 |
. . . . . 6
|
| 10 | eqgex 13590 |
. . . . . 6
| |
| 11 | 2, 9, 10 | sylancr 414 |
. . . . 5
|
| 12 | qusex 13190 |
. . . . 5
| |
| 13 | 2, 11, 12 | sylancr 414 |
. . . 4
|
| 14 | 1, 13 | eqeltrid 2292 |
. . 3
|
| 15 | znval2.y |
. . . . . 6
| |
| 16 | eqid 2205 |
. . . . . 6
| |
| 17 | eqid 2205 |
. . . . . 6
| |
| 18 | eqid 2205 |
. . . . . 6
| |
| 19 | 3, 1, 15, 16, 17, 18 | znval 14431 |
. . . . 5
|
| 20 | plendxnn 13068 |
. . . . . . 7
| |
| 21 | 20 | a1i 9 |
. . . . . 6
|
| 22 | eqid 2205 |
. . . . . . . . . . 11
| |
| 23 | 22 | zrhex 14416 |
. . . . . . . . . 10
|
| 24 | 14, 23 | syl 14 |
. . . . . . . . 9
|
| 25 | resexg 5000 |
. . . . . . . . 9
| |
| 26 | 24, 25 | syl 14 |
. . . . . . . 8
|
| 27 | xrex 9980 |
. . . . . . . . . 10
| |
| 28 | 27, 27 | xpex 4791 |
. . . . . . . . 9
|
| 29 | lerelxr 8137 |
. . . . . . . . 9
| |
| 30 | 28, 29 | ssexi 4183 |
. . . . . . . 8
|
| 31 | coexg 5228 |
. . . . . . . 8
| |
| 32 | 26, 30, 31 | sylancl 413 |
. . . . . . 7
|
| 33 | cnvexg 5221 |
. . . . . . . 8
| |
| 34 | 26, 33 | syl 14 |
. . . . . . 7
|
| 35 | coexg 5228 |
. . . . . . 7
| |
| 36 | 32, 34, 35 | syl2anc 411 |
. . . . . 6
|
| 37 | setsex 12897 |
. . . . . 6
| |
| 38 | 14, 21, 36, 37 | syl3anc 1250 |
. . . . 5
|
| 39 | 19, 38 | eqeltrd 2282 |
. . . 4
|
| 40 | pleslid 13067 |
. . . . 5
| |
| 41 | 40 | slotex 12892 |
. . . 4
|
| 42 | 39, 41 | syl 14 |
. . 3
|
| 43 | znbaslem.e |
. . . . 5
| |
| 44 | znbaslemnn.nn |
. . . . 5
| |
| 45 | 43, 44 | ndxslid 12890 |
. . . 4
|
| 46 | znbaslem.n |
. . . 4
| |
| 47 | 45, 46, 20 | setsslnid 12917 |
. . 3
|
| 48 | 14, 42, 47 | syl2anc 411 |
. 2
|
| 49 | eqid 2205 |
. . . 4
| |
| 50 | 3, 1, 15, 49 | znval2 14433 |
. . 3
|
| 51 | 50 | fveq2d 5582 |
. 2
|
| 52 | 48, 51 | eqtr4d 2241 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4160 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-cnex 8018 ax-resscn 8019 ax-1cn 8020 ax-1re 8021 ax-icn 8022 ax-addcl 8023 ax-addrcl 8024 ax-mulcl 8025 ax-mulrcl 8026 ax-addcom 8027 ax-mulcom 8028 ax-addass 8029 ax-mulass 8030 ax-distr 8031 ax-i2m1 8032 ax-0lt1 8033 ax-1rid 8034 ax-0id 8035 ax-rnegex 8036 ax-precex 8037 ax-cnre 8038 ax-pre-ltirr 8039 ax-pre-ltwlin 8040 ax-pre-lttrn 8041 ax-pre-apti 8042 ax-pre-ltadd 8043 ax-pre-mulgt0 8044 ax-addf 8049 ax-mulf 8050 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-tp 3641 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4046 df-opab 4107 df-mpt 4108 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-f1 5277 df-fo 5278 df-f1o 5279 df-fv 5280 df-riota 5901 df-ov 5949 df-oprab 5950 df-mpo 5951 df-1st 6228 df-2nd 6229 df-ec 6624 df-map 6739 df-pnf 8111 df-mnf 8112 df-xr 8113 df-ltxr 8114 df-le 8115 df-sub 8247 df-neg 8248 df-reap 8650 df-inn 9039 df-2 9097 df-3 9098 df-4 9099 df-5 9100 df-6 9101 df-7 9102 df-8 9103 df-9 9104 df-n0 9298 df-z 9375 df-dec 9507 df-uz 9651 df-rp 9778 df-fz 10133 df-cj 11186 df-abs 11343 df-struct 12867 df-ndx 12868 df-slot 12869 df-base 12871 df-sets 12872 df-iress 12873 df-plusg 12955 df-mulr 12956 df-starv 12957 df-sca 12958 df-vsca 12959 df-ip 12960 df-tset 12961 df-ple 12962 df-ds 12964 df-unif 12965 df-0g 13123 df-topgen 13125 df-iimas 13167 df-qus 13168 df-mgm 13221 df-sgrp 13267 df-mnd 13282 df-grp 13368 df-minusg 13369 df-subg 13539 df-eqg 13541 df-cmn 13655 df-mgp 13716 df-ur 13755 df-ring 13793 df-cring 13794 df-rhm 13947 df-subrg 14014 df-lsp 14182 df-sra 14230 df-rgmod 14231 df-rsp 14265 df-bl 14341 df-mopn 14342 df-fg 14344 df-metu 14345 df-cnfld 14352 df-zring 14386 df-zrh 14409 df-zn 14411 |
| This theorem is referenced by: znbas2 14435 znadd 14436 znmul 14437 |
| Copyright terms: Public domain | W3C validator |