| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > znbaslemnn | Unicode version | ||
| Description: Lemma for znbas 14521. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by Mario Carneiro, 14-Aug-2015.) (Revised by AV, 13-Jun-2019.) (Revised by AV, 9-Sep-2021.) (Revised by AV, 3-Nov-2024.) |
| Ref | Expression |
|---|---|
| znval2.s |
|
| znval2.u |
|
| znval2.y |
|
| znbaslem.e |
|
| znbaslemnn.nn |
|
| znbaslem.n |
|
| Ref | Expression |
|---|---|
| znbaslemnn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | znval2.u |
. . . 4
| |
| 2 | zringring 14470 |
. . . . 5
| |
| 3 | znval2.s |
. . . . . . . 8
| |
| 4 | rspex 14351 |
. . . . . . . . 9
| |
| 5 | 2, 4 | ax-mp 5 |
. . . . . . . 8
|
| 6 | 3, 5 | eqeltri 2280 |
. . . . . . 7
|
| 7 | snexg 4244 |
. . . . . . 7
| |
| 8 | fvexg 5618 |
. . . . . . 7
| |
| 9 | 6, 7, 8 | sylancr 414 |
. . . . . 6
|
| 10 | eqgex 13672 |
. . . . . 6
| |
| 11 | 2, 9, 10 | sylancr 414 |
. . . . 5
|
| 12 | qusex 13272 |
. . . . 5
| |
| 13 | 2, 11, 12 | sylancr 414 |
. . . 4
|
| 14 | 1, 13 | eqeltrid 2294 |
. . 3
|
| 15 | znval2.y |
. . . . . 6
| |
| 16 | eqid 2207 |
. . . . . 6
| |
| 17 | eqid 2207 |
. . . . . 6
| |
| 18 | eqid 2207 |
. . . . . 6
| |
| 19 | 3, 1, 15, 16, 17, 18 | znval 14513 |
. . . . 5
|
| 20 | plendxnn 13150 |
. . . . . . 7
| |
| 21 | 20 | a1i 9 |
. . . . . 6
|
| 22 | eqid 2207 |
. . . . . . . . . . 11
| |
| 23 | 22 | zrhex 14498 |
. . . . . . . . . 10
|
| 24 | 14, 23 | syl 14 |
. . . . . . . . 9
|
| 25 | resexg 5018 |
. . . . . . . . 9
| |
| 26 | 24, 25 | syl 14 |
. . . . . . . 8
|
| 27 | xrex 10013 |
. . . . . . . . . 10
| |
| 28 | 27, 27 | xpex 4808 |
. . . . . . . . 9
|
| 29 | lerelxr 8170 |
. . . . . . . . 9
| |
| 30 | 28, 29 | ssexi 4198 |
. . . . . . . 8
|
| 31 | coexg 5246 |
. . . . . . . 8
| |
| 32 | 26, 30, 31 | sylancl 413 |
. . . . . . 7
|
| 33 | cnvexg 5239 |
. . . . . . . 8
| |
| 34 | 26, 33 | syl 14 |
. . . . . . 7
|
| 35 | coexg 5246 |
. . . . . . 7
| |
| 36 | 32, 34, 35 | syl2anc 411 |
. . . . . 6
|
| 37 | setsex 12979 |
. . . . . 6
| |
| 38 | 14, 21, 36, 37 | syl3anc 1250 |
. . . . 5
|
| 39 | 19, 38 | eqeltrd 2284 |
. . . 4
|
| 40 | pleslid 13149 |
. . . . 5
| |
| 41 | 40 | slotex 12974 |
. . . 4
|
| 42 | 39, 41 | syl 14 |
. . 3
|
| 43 | znbaslem.e |
. . . . 5
| |
| 44 | znbaslemnn.nn |
. . . . 5
| |
| 45 | 43, 44 | ndxslid 12972 |
. . . 4
|
| 46 | znbaslem.n |
. . . 4
| |
| 47 | 45, 46, 20 | setsslnid 12999 |
. . 3
|
| 48 | 14, 42, 47 | syl2anc 411 |
. 2
|
| 49 | eqid 2207 |
. . . 4
| |
| 50 | 3, 1, 15, 49 | znval2 14515 |
. . 3
|
| 51 | 50 | fveq2d 5603 |
. 2
|
| 52 | 48, 51 | eqtr4d 2243 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulrcl 8059 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-precex 8070 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 ax-pre-mulgt0 8077 ax-addf 8082 ax-mulf 8083 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-tp 3651 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-ec 6645 df-map 6760 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-reap 8683 df-inn 9072 df-2 9130 df-3 9131 df-4 9132 df-5 9133 df-6 9134 df-7 9135 df-8 9136 df-9 9137 df-n0 9331 df-z 9408 df-dec 9540 df-uz 9684 df-rp 9811 df-fz 10166 df-cj 11268 df-abs 11425 df-struct 12949 df-ndx 12950 df-slot 12951 df-base 12953 df-sets 12954 df-iress 12955 df-plusg 13037 df-mulr 13038 df-starv 13039 df-sca 13040 df-vsca 13041 df-ip 13042 df-tset 13043 df-ple 13044 df-ds 13046 df-unif 13047 df-0g 13205 df-topgen 13207 df-iimas 13249 df-qus 13250 df-mgm 13303 df-sgrp 13349 df-mnd 13364 df-grp 13450 df-minusg 13451 df-subg 13621 df-eqg 13623 df-cmn 13737 df-mgp 13798 df-ur 13837 df-ring 13875 df-cring 13876 df-rhm 14029 df-subrg 14096 df-lsp 14264 df-sra 14312 df-rgmod 14313 df-rsp 14347 df-bl 14423 df-mopn 14424 df-fg 14426 df-metu 14427 df-cnfld 14434 df-zring 14468 df-zrh 14491 df-zn 14493 |
| This theorem is referenced by: znbas2 14517 znadd 14518 znmul 14519 |
| Copyright terms: Public domain | W3C validator |