| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > plusgslid | Unicode version | ||
| Description: Slot property of |
| Ref | Expression |
|---|---|
| plusgslid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-plusg 13118 |
. 2
| |
| 2 | 2nn 9268 |
. 2
| |
| 3 | 1, 2 | ndxslid 13052 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-cnex 8086 ax-resscn 8087 ax-1re 8089 ax-addrcl 8092 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-iota 5277 df-fun 5319 df-fv 5325 df-ov 6003 df-inn 9107 df-2 9165 df-ndx 13030 df-slot 13031 df-plusg 13118 |
| This theorem is referenced by: ressplusgd 13157 rngplusgg 13165 srngplusgd 13176 lmodplusgd 13194 ipsaddgd 13206 topgrpplusgd 13226 prdsplusgfval 13312 imasex 13333 imasival 13334 imasbas 13335 imasplusg 13336 imasaddfn 13345 imasaddval 13346 imasaddf 13347 qusaddval 13363 qusaddf 13364 ismgm 13385 plusfvalg 13391 plusffng 13393 gsumpropd2 13421 gsumsplit1r 13426 gsumprval 13427 issgrp 13431 ismnddef 13446 gsumfzz 13523 gsumwsubmcl 13524 gsumwmhm 13526 gsumfzcl 13527 grppropstrg 13547 grpsubval 13574 mulgval 13654 mulgfng 13656 mulgnngsum 13659 mulg1 13661 mulgnnp1 13662 mulgnndir 13683 subgintm 13730 isnsg 13734 gsumfzreidx 13869 gsumfzsubmcl 13870 gsumfzmptfidmadd 13871 gsumfzconst 13873 gsumfzmhm 13875 fnmgp 13880 mgpvalg 13881 mgpplusgg 13882 mgpex 13883 mgpbasg 13884 mgpscag 13885 mgptsetg 13886 mgpdsg 13888 mgpress 13889 isrng 13892 issrg 13923 isring 13958 ring1 14017 oppraddg 14034 islmod 14249 rmodislmod 14309 lsssn0 14328 lss1d 14341 lssintclm 14342 sraaddgg 14398 mpocnfldadd 14519 psrplusgg 14636 |
| Copyright terms: Public domain | W3C validator |