| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > plusgslid | Unicode version | ||
| Description: Slot property of |
| Ref | Expression |
|---|---|
| plusgslid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-plusg 12922 |
. 2
| |
| 2 | 2nn 9198 |
. 2
| |
| 3 | 1, 2 | ndxslid 12857 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-cnex 8016 ax-resscn 8017 ax-1re 8019 ax-addrcl 8022 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-sbc 2999 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-iota 5232 df-fun 5273 df-fv 5279 df-ov 5947 df-inn 9037 df-2 9095 df-ndx 12835 df-slot 12836 df-plusg 12922 |
| This theorem is referenced by: ressplusgd 12961 rngplusgg 12969 srngplusgd 12980 lmodplusgd 12998 ipsaddgd 13010 topgrpplusgd 13030 prdsplusgfval 13116 imasex 13137 imasival 13138 imasbas 13139 imasplusg 13140 imasaddfn 13149 imasaddval 13150 imasaddf 13151 qusaddval 13167 qusaddf 13168 ismgm 13189 plusfvalg 13195 plusffng 13197 gsumpropd2 13225 gsumsplit1r 13230 gsumprval 13231 issgrp 13235 ismnddef 13250 gsumfzz 13327 gsumwsubmcl 13328 gsumwmhm 13330 gsumfzcl 13331 grppropstrg 13351 grpsubval 13378 mulgval 13458 mulgfng 13460 mulgnngsum 13463 mulg1 13465 mulgnnp1 13466 mulgnndir 13487 subgintm 13534 isnsg 13538 gsumfzreidx 13673 gsumfzsubmcl 13674 gsumfzmptfidmadd 13675 gsumfzconst 13677 gsumfzmhm 13679 fnmgp 13684 mgpvalg 13685 mgpplusgg 13686 mgpex 13687 mgpbasg 13688 mgpscag 13689 mgptsetg 13690 mgpdsg 13692 mgpress 13693 isrng 13696 issrg 13727 isring 13762 ring1 13821 oppraddg 13838 islmod 14053 rmodislmod 14113 lsssn0 14132 lss1d 14145 lssintclm 14146 sraaddgg 14202 mpocnfldadd 14323 psrplusgg 14440 |
| Copyright terms: Public domain | W3C validator |