ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qusgrp2 Unicode version

Theorem qusgrp2 13186
Description: Prove that a quotient structure is a group. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypotheses
Ref Expression
qusgrp2.u  |-  ( ph  ->  U  =  ( R 
/.s  .~  ) )
qusgrp2.v  |-  ( ph  ->  V  =  ( Base `  R ) )
qusgrp2.p  |-  ( ph  ->  .+  =  ( +g  `  R ) )
qusgrp2.r  |-  ( ph  ->  .~  Er  V )
qusgrp2.x  |-  ( ph  ->  R  e.  X )
qusgrp2.e  |-  ( ph  ->  ( ( a  .~  p  /\  b  .~  q
)  ->  ( a  .+  b )  .~  (
p  .+  q )
) )
qusgrp2.1  |-  ( (
ph  /\  x  e.  V  /\  y  e.  V
)  ->  ( x  .+  y )  e.  V
)
qusgrp2.2  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  -> 
( ( x  .+  y )  .+  z
)  .~  ( x  .+  ( y  .+  z
) ) )
qusgrp2.3  |-  ( ph  ->  .0.  e.  V )
qusgrp2.4  |-  ( (
ph  /\  x  e.  V )  ->  (  .0.  .+  x )  .~  x )
qusgrp2.5  |-  ( (
ph  /\  x  e.  V )  ->  N  e.  V )
qusgrp2.6  |-  ( (
ph  /\  x  e.  V )  ->  ( N  .+  x )  .~  .0.  )
Assertion
Ref Expression
qusgrp2  |-  ( ph  ->  ( U  e.  Grp  /\ 
[  .0.  ]  .~  =  ( 0g `  U ) ) )
Distinct variable groups:    a, b, p, q, x, y, z, 
.~    .0. , a, b, p, q, x    N, p    R, p, q    .+ , a,
b, p, q, x, y    ph, a, b, p, q, x, y, z    V, a, b, p, q, x, y, z    U, a, b, p, q, x, y, z
Allowed substitution hints:    .+ ( z)    R( x, y, z, a, b)    N( x, y, z, q, a, b)    X( x, y, z, q, p, a, b)    .0. ( y,
z)

Proof of Theorem qusgrp2
Dummy variable  u is distinct from all other variables.
StepHypRef Expression
1 qusgrp2.u . . . 4  |-  ( ph  ->  U  =  ( R 
/.s  .~  ) )
2 qusgrp2.v . . . 4  |-  ( ph  ->  V  =  ( Base `  R ) )
3 eqid 2193 . . . 4  |-  ( u  e.  V  |->  [ u ]  .~  )  =  ( u  e.  V  |->  [ u ]  .~  )
4 qusgrp2.r . . . . 5  |-  ( ph  ->  .~  Er  V )
5 basfn 12679 . . . . . . 7  |-  Base  Fn  _V
6 qusgrp2.x . . . . . . . 8  |-  ( ph  ->  R  e.  X )
76elexd 2773 . . . . . . 7  |-  ( ph  ->  R  e.  _V )
8 funfvex 5572 . . . . . . . 8  |-  ( ( Fun  Base  /\  R  e. 
dom  Base )  ->  ( Base `  R )  e. 
_V )
98funfni 5355 . . . . . . 7  |-  ( (
Base  Fn  _V  /\  R  e.  _V )  ->  ( Base `  R )  e. 
_V )
105, 7, 9sylancr 414 . . . . . 6  |-  ( ph  ->  ( Base `  R
)  e.  _V )
112, 10eqeltrd 2270 . . . . 5  |-  ( ph  ->  V  e.  _V )
12 erex 6613 . . . . 5  |-  (  .~  Er  V  ->  ( V  e.  _V  ->  .~  e.  _V ) )
134, 11, 12sylc 62 . . . 4  |-  ( ph  ->  .~  e.  _V )
141, 2, 3, 13, 6qusval 12909 . . 3  |-  ( ph  ->  U  =  ( ( u  e.  V  |->  [ u ]  .~  )  "s  R ) )
15 qusgrp2.p . . 3  |-  ( ph  ->  .+  =  ( +g  `  R ) )
161, 2, 3, 13, 6quslem 12910 . . 3  |-  ( ph  ->  ( u  e.  V  |->  [ u ]  .~  ) : V -onto-> ( V /.  .~  ) )
17 qusgrp2.1 . . . . 5  |-  ( (
ph  /\  x  e.  V  /\  y  e.  V
)  ->  ( x  .+  y )  e.  V
)
18173expb 1206 . . . 4  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V ) )  -> 
( x  .+  y
)  e.  V )
19 qusgrp2.e . . . 4  |-  ( ph  ->  ( ( a  .~  p  /\  b  .~  q
)  ->  ( a  .+  b )  .~  (
p  .+  q )
) )
204, 11, 3, 18, 19ercpbl 12917 . . 3  |-  ( (
ph  /\  ( a  e.  V  /\  b  e.  V )  /\  (
p  e.  V  /\  q  e.  V )
)  ->  ( (
( ( u  e.  V  |->  [ u ]  .~  ) `  a )  =  ( ( u  e.  V  |->  [ u ]  .~  ) `  p
)  /\  ( (
u  e.  V  |->  [ u ]  .~  ) `  b )  =  ( ( u  e.  V  |->  [ u ]  .~  ) `  q )
)  ->  ( (
u  e.  V  |->  [ u ]  .~  ) `  ( a  .+  b
) )  =  ( ( u  e.  V  |->  [ u ]  .~  ) `  ( p  .+  q ) ) ) )
214adantr 276 . . . . 5  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  ->  .~  Er  V )
22 qusgrp2.2 . . . . 5  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  -> 
( ( x  .+  y )  .+  z
)  .~  ( x  .+  ( y  .+  z
) ) )
2321, 22erthi 6637 . . . 4  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  ->  [ ( ( x 
.+  y )  .+  z ) ]  .~  =  [ ( x  .+  ( y  .+  z
) ) ]  .~  )
2411adantr 276 . . . . 5  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  ->  V  e.  _V )
2521, 22ercl 6600 . . . . 5  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  -> 
( ( x  .+  y )  .+  z
)  e.  V )
2621, 24, 3, 25divsfvalg 12915 . . . 4  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  -> 
( ( u  e.  V  |->  [ u ]  .~  ) `  ( ( x  .+  y ) 
.+  z ) )  =  [ ( ( x  .+  y ) 
.+  z ) ]  .~  )
2721, 22ercl2 6602 . . . . 5  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  -> 
( x  .+  (
y  .+  z )
)  e.  V )
2821, 24, 3, 27divsfvalg 12915 . . . 4  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  -> 
( ( u  e.  V  |->  [ u ]  .~  ) `  ( x 
.+  ( y  .+  z ) ) )  =  [ ( x 
.+  ( y  .+  z ) ) ]  .~  )
2923, 26, 283eqtr4d 2236 . . 3  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  -> 
( ( u  e.  V  |->  [ u ]  .~  ) `  ( ( x  .+  y ) 
.+  z ) )  =  ( ( u  e.  V  |->  [ u ]  .~  ) `  (
x  .+  ( y  .+  z ) ) ) )
30 qusgrp2.3 . . 3  |-  ( ph  ->  .0.  e.  V )
314adantr 276 . . . . 5  |-  ( (
ph  /\  x  e.  V )  ->  .~  Er  V )
32 qusgrp2.4 . . . . 5  |-  ( (
ph  /\  x  e.  V )  ->  (  .0.  .+  x )  .~  x )
3331, 32erthi 6637 . . . 4  |-  ( (
ph  /\  x  e.  V )  ->  [ (  .0.  .+  x ) ]  .~  =  [ x ]  .~  )
3411adantr 276 . . . . 5  |-  ( (
ph  /\  x  e.  V )  ->  V  e.  _V )
3531, 32ercl 6600 . . . . 5  |-  ( (
ph  /\  x  e.  V )  ->  (  .0.  .+  x )  e.  V )
3631, 34, 3, 35divsfvalg 12915 . . . 4  |-  ( (
ph  /\  x  e.  V )  ->  (
( u  e.  V  |->  [ u ]  .~  ) `  (  .0.  .+  x ) )  =  [ (  .0.  .+  x ) ]  .~  )
37 simpr 110 . . . . 5  |-  ( (
ph  /\  x  e.  V )  ->  x  e.  V )
3831, 34, 3, 37divsfvalg 12915 . . . 4  |-  ( (
ph  /\  x  e.  V )  ->  (
( u  e.  V  |->  [ u ]  .~  ) `  x )  =  [ x ]  .~  )
3933, 36, 383eqtr4d 2236 . . 3  |-  ( (
ph  /\  x  e.  V )  ->  (
( u  e.  V  |->  [ u ]  .~  ) `  (  .0.  .+  x ) )  =  ( ( u  e.  V  |->  [ u ]  .~  ) `  x ) )
40 qusgrp2.5 . . 3  |-  ( (
ph  /\  x  e.  V )  ->  N  e.  V )
41 qusgrp2.6 . . . . . 6  |-  ( (
ph  /\  x  e.  V )  ->  ( N  .+  x )  .~  .0.  )
4231, 41ersym 6601 . . . . 5  |-  ( (
ph  /\  x  e.  V )  ->  .0.  .~  ( N  .+  x
) )
4331, 42erthi 6637 . . . 4  |-  ( (
ph  /\  x  e.  V )  ->  [  .0.  ]  .~  =  [ ( N  .+  x ) ]  .~  )
4430adantr 276 . . . . 5  |-  ( (
ph  /\  x  e.  V )  ->  .0.  e.  V )
4531, 34, 3, 44divsfvalg 12915 . . . 4  |-  ( (
ph  /\  x  e.  V )  ->  (
( u  e.  V  |->  [ u ]  .~  ) `  .0.  )  =  [  .0.  ]  .~  )
4631, 41ercl 6600 . . . . 5  |-  ( (
ph  /\  x  e.  V )  ->  ( N  .+  x )  e.  V )
4731, 34, 3, 46divsfvalg 12915 . . . 4  |-  ( (
ph  /\  x  e.  V )  ->  (
( u  e.  V  |->  [ u ]  .~  ) `  ( N  .+  x ) )  =  [ ( N  .+  x ) ]  .~  )
4843, 45, 473eqtr4rd 2237 . . 3  |-  ( (
ph  /\  x  e.  V )  ->  (
( u  e.  V  |->  [ u ]  .~  ) `  ( N  .+  x ) )  =  ( ( u  e.  V  |->  [ u ]  .~  ) `  .0.  )
)
4914, 2, 15, 16, 20, 6, 17, 29, 30, 39, 40, 48imasgrp2 13183 . 2  |-  ( ph  ->  ( U  e.  Grp  /\  ( ( u  e.  V  |->  [ u ]  .~  ) `  .0.  )  =  ( 0g `  U ) ) )
504, 11, 3, 30divsfvalg 12915 . . . . 5  |-  ( ph  ->  ( ( u  e.  V  |->  [ u ]  .~  ) `  .0.  )  =  [  .0.  ]  .~  )
5150eqcomd 2199 . . . 4  |-  ( ph  ->  [  .0.  ]  .~  =  ( ( u  e.  V  |->  [ u ]  .~  ) `  .0.  ) )
5251eqeq1d 2202 . . 3  |-  ( ph  ->  ( [  .0.  ]  .~  =  ( 0g `  U )  <->  ( (
u  e.  V  |->  [ u ]  .~  ) `  .0.  )  =  ( 0g `  U ) ) )
5352anbi2d 464 . 2  |-  ( ph  ->  ( ( U  e. 
Grp  /\  [  .0.  ]  .~  =  ( 0g
`  U ) )  <-> 
( U  e.  Grp  /\  ( ( u  e.  V  |->  [ u ]  .~  ) `  .0.  )  =  ( 0g `  U ) ) ) )
5449, 53mpbird 167 1  |-  ( ph  ->  ( U  e.  Grp  /\ 
[  .0.  ]  .~  =  ( 0g `  U ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2164   _Vcvv 2760   class class class wbr 4030    |-> cmpt 4091    Fn wfn 5250   ` cfv 5255  (class class class)co 5919    Er wer 6586   [cec 6587   /.cqs 6588   Basecbs 12621   +g cplusg 12698   0gc0g 12870    /.s cqus 12886   Grpcgrp 13075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-pre-ltirr 7986  ax-pre-lttrn 7988  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-tp 3627  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-er 6589  df-ec 6591  df-qs 6595  df-pnf 8058  df-mnf 8059  df-ltxr 8061  df-inn 8985  df-2 9043  df-3 9044  df-ndx 12624  df-slot 12625  df-base 12627  df-plusg 12711  df-mulr 12712  df-0g 12872  df-iimas 12888  df-qus 12889  df-mgm 12942  df-sgrp 12988  df-mnd 13001  df-grp 13078
This theorem is referenced by:  qusgrp  13305
  Copyright terms: Public domain W3C validator