ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qusgrp2 Unicode version

Theorem qusgrp2 13319
Description: Prove that a quotient structure is a group. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypotheses
Ref Expression
qusgrp2.u  |-  ( ph  ->  U  =  ( R 
/.s  .~  ) )
qusgrp2.v  |-  ( ph  ->  V  =  ( Base `  R ) )
qusgrp2.p  |-  ( ph  ->  .+  =  ( +g  `  R ) )
qusgrp2.r  |-  ( ph  ->  .~  Er  V )
qusgrp2.x  |-  ( ph  ->  R  e.  X )
qusgrp2.e  |-  ( ph  ->  ( ( a  .~  p  /\  b  .~  q
)  ->  ( a  .+  b )  .~  (
p  .+  q )
) )
qusgrp2.1  |-  ( (
ph  /\  x  e.  V  /\  y  e.  V
)  ->  ( x  .+  y )  e.  V
)
qusgrp2.2  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  -> 
( ( x  .+  y )  .+  z
)  .~  ( x  .+  ( y  .+  z
) ) )
qusgrp2.3  |-  ( ph  ->  .0.  e.  V )
qusgrp2.4  |-  ( (
ph  /\  x  e.  V )  ->  (  .0.  .+  x )  .~  x )
qusgrp2.5  |-  ( (
ph  /\  x  e.  V )  ->  N  e.  V )
qusgrp2.6  |-  ( (
ph  /\  x  e.  V )  ->  ( N  .+  x )  .~  .0.  )
Assertion
Ref Expression
qusgrp2  |-  ( ph  ->  ( U  e.  Grp  /\ 
[  .0.  ]  .~  =  ( 0g `  U ) ) )
Distinct variable groups:    a, b, p, q, x, y, z, 
.~    .0. , a, b, p, q, x    N, p    R, p, q    .+ , a,
b, p, q, x, y    ph, a, b, p, q, x, y, z    V, a, b, p, q, x, y, z    U, a, b, p, q, x, y, z
Allowed substitution hints:    .+ ( z)    R( x, y, z, a, b)    N( x, y, z, q, a, b)    X( x, y, z, q, p, a, b)    .0. ( y,
z)

Proof of Theorem qusgrp2
Dummy variable  u is distinct from all other variables.
StepHypRef Expression
1 qusgrp2.u . . . 4  |-  ( ph  ->  U  =  ( R 
/.s  .~  ) )
2 qusgrp2.v . . . 4  |-  ( ph  ->  V  =  ( Base `  R ) )
3 eqid 2196 . . . 4  |-  ( u  e.  V  |->  [ u ]  .~  )  =  ( u  e.  V  |->  [ u ]  .~  )
4 qusgrp2.r . . . . 5  |-  ( ph  ->  .~  Er  V )
5 basfn 12761 . . . . . . 7  |-  Base  Fn  _V
6 qusgrp2.x . . . . . . . 8  |-  ( ph  ->  R  e.  X )
76elexd 2776 . . . . . . 7  |-  ( ph  ->  R  e.  _V )
8 funfvex 5578 . . . . . . . 8  |-  ( ( Fun  Base  /\  R  e. 
dom  Base )  ->  ( Base `  R )  e. 
_V )
98funfni 5361 . . . . . . 7  |-  ( (
Base  Fn  _V  /\  R  e.  _V )  ->  ( Base `  R )  e. 
_V )
105, 7, 9sylancr 414 . . . . . 6  |-  ( ph  ->  ( Base `  R
)  e.  _V )
112, 10eqeltrd 2273 . . . . 5  |-  ( ph  ->  V  e.  _V )
12 erex 6625 . . . . 5  |-  (  .~  Er  V  ->  ( V  e.  _V  ->  .~  e.  _V ) )
134, 11, 12sylc 62 . . . 4  |-  ( ph  ->  .~  e.  _V )
141, 2, 3, 13, 6qusval 13025 . . 3  |-  ( ph  ->  U  =  ( ( u  e.  V  |->  [ u ]  .~  )  "s  R ) )
15 qusgrp2.p . . 3  |-  ( ph  ->  .+  =  ( +g  `  R ) )
161, 2, 3, 13, 6quslem 13026 . . 3  |-  ( ph  ->  ( u  e.  V  |->  [ u ]  .~  ) : V -onto-> ( V /.  .~  ) )
17 qusgrp2.1 . . . . 5  |-  ( (
ph  /\  x  e.  V  /\  y  e.  V
)  ->  ( x  .+  y )  e.  V
)
18173expb 1206 . . . 4  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V ) )  -> 
( x  .+  y
)  e.  V )
19 qusgrp2.e . . . 4  |-  ( ph  ->  ( ( a  .~  p  /\  b  .~  q
)  ->  ( a  .+  b )  .~  (
p  .+  q )
) )
204, 11, 3, 18, 19ercpbl 13033 . . 3  |-  ( (
ph  /\  ( a  e.  V  /\  b  e.  V )  /\  (
p  e.  V  /\  q  e.  V )
)  ->  ( (
( ( u  e.  V  |->  [ u ]  .~  ) `  a )  =  ( ( u  e.  V  |->  [ u ]  .~  ) `  p
)  /\  ( (
u  e.  V  |->  [ u ]  .~  ) `  b )  =  ( ( u  e.  V  |->  [ u ]  .~  ) `  q )
)  ->  ( (
u  e.  V  |->  [ u ]  .~  ) `  ( a  .+  b
) )  =  ( ( u  e.  V  |->  [ u ]  .~  ) `  ( p  .+  q ) ) ) )
214adantr 276 . . . . 5  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  ->  .~  Er  V )
22 qusgrp2.2 . . . . 5  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  -> 
( ( x  .+  y )  .+  z
)  .~  ( x  .+  ( y  .+  z
) ) )
2321, 22erthi 6649 . . . 4  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  ->  [ ( ( x 
.+  y )  .+  z ) ]  .~  =  [ ( x  .+  ( y  .+  z
) ) ]  .~  )
2411adantr 276 . . . . 5  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  ->  V  e.  _V )
2521, 22ercl 6612 . . . . 5  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  -> 
( ( x  .+  y )  .+  z
)  e.  V )
2621, 24, 3, 25divsfvalg 13031 . . . 4  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  -> 
( ( u  e.  V  |->  [ u ]  .~  ) `  ( ( x  .+  y ) 
.+  z ) )  =  [ ( ( x  .+  y ) 
.+  z ) ]  .~  )
2721, 22ercl2 6614 . . . . 5  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  -> 
( x  .+  (
y  .+  z )
)  e.  V )
2821, 24, 3, 27divsfvalg 13031 . . . 4  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  -> 
( ( u  e.  V  |->  [ u ]  .~  ) `  ( x 
.+  ( y  .+  z ) ) )  =  [ ( x 
.+  ( y  .+  z ) ) ]  .~  )
2923, 26, 283eqtr4d 2239 . . 3  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  -> 
( ( u  e.  V  |->  [ u ]  .~  ) `  ( ( x  .+  y ) 
.+  z ) )  =  ( ( u  e.  V  |->  [ u ]  .~  ) `  (
x  .+  ( y  .+  z ) ) ) )
30 qusgrp2.3 . . 3  |-  ( ph  ->  .0.  e.  V )
314adantr 276 . . . . 5  |-  ( (
ph  /\  x  e.  V )  ->  .~  Er  V )
32 qusgrp2.4 . . . . 5  |-  ( (
ph  /\  x  e.  V )  ->  (  .0.  .+  x )  .~  x )
3331, 32erthi 6649 . . . 4  |-  ( (
ph  /\  x  e.  V )  ->  [ (  .0.  .+  x ) ]  .~  =  [ x ]  .~  )
3411adantr 276 . . . . 5  |-  ( (
ph  /\  x  e.  V )  ->  V  e.  _V )
3531, 32ercl 6612 . . . . 5  |-  ( (
ph  /\  x  e.  V )  ->  (  .0.  .+  x )  e.  V )
3631, 34, 3, 35divsfvalg 13031 . . . 4  |-  ( (
ph  /\  x  e.  V )  ->  (
( u  e.  V  |->  [ u ]  .~  ) `  (  .0.  .+  x ) )  =  [ (  .0.  .+  x ) ]  .~  )
37 simpr 110 . . . . 5  |-  ( (
ph  /\  x  e.  V )  ->  x  e.  V )
3831, 34, 3, 37divsfvalg 13031 . . . 4  |-  ( (
ph  /\  x  e.  V )  ->  (
( u  e.  V  |->  [ u ]  .~  ) `  x )  =  [ x ]  .~  )
3933, 36, 383eqtr4d 2239 . . 3  |-  ( (
ph  /\  x  e.  V )  ->  (
( u  e.  V  |->  [ u ]  .~  ) `  (  .0.  .+  x ) )  =  ( ( u  e.  V  |->  [ u ]  .~  ) `  x ) )
40 qusgrp2.5 . . 3  |-  ( (
ph  /\  x  e.  V )  ->  N  e.  V )
41 qusgrp2.6 . . . . . 6  |-  ( (
ph  /\  x  e.  V )  ->  ( N  .+  x )  .~  .0.  )
4231, 41ersym 6613 . . . . 5  |-  ( (
ph  /\  x  e.  V )  ->  .0.  .~  ( N  .+  x
) )
4331, 42erthi 6649 . . . 4  |-  ( (
ph  /\  x  e.  V )  ->  [  .0.  ]  .~  =  [ ( N  .+  x ) ]  .~  )
4430adantr 276 . . . . 5  |-  ( (
ph  /\  x  e.  V )  ->  .0.  e.  V )
4531, 34, 3, 44divsfvalg 13031 . . . 4  |-  ( (
ph  /\  x  e.  V )  ->  (
( u  e.  V  |->  [ u ]  .~  ) `  .0.  )  =  [  .0.  ]  .~  )
4631, 41ercl 6612 . . . . 5  |-  ( (
ph  /\  x  e.  V )  ->  ( N  .+  x )  e.  V )
4731, 34, 3, 46divsfvalg 13031 . . . 4  |-  ( (
ph  /\  x  e.  V )  ->  (
( u  e.  V  |->  [ u ]  .~  ) `  ( N  .+  x ) )  =  [ ( N  .+  x ) ]  .~  )
4843, 45, 473eqtr4rd 2240 . . 3  |-  ( (
ph  /\  x  e.  V )  ->  (
( u  e.  V  |->  [ u ]  .~  ) `  ( N  .+  x ) )  =  ( ( u  e.  V  |->  [ u ]  .~  ) `  .0.  )
)
4914, 2, 15, 16, 20, 6, 17, 29, 30, 39, 40, 48imasgrp2 13316 . 2  |-  ( ph  ->  ( U  e.  Grp  /\  ( ( u  e.  V  |->  [ u ]  .~  ) `  .0.  )  =  ( 0g `  U ) ) )
504, 11, 3, 30divsfvalg 13031 . . . . 5  |-  ( ph  ->  ( ( u  e.  V  |->  [ u ]  .~  ) `  .0.  )  =  [  .0.  ]  .~  )
5150eqcomd 2202 . . . 4  |-  ( ph  ->  [  .0.  ]  .~  =  ( ( u  e.  V  |->  [ u ]  .~  ) `  .0.  ) )
5251eqeq1d 2205 . . 3  |-  ( ph  ->  ( [  .0.  ]  .~  =  ( 0g `  U )  <->  ( (
u  e.  V  |->  [ u ]  .~  ) `  .0.  )  =  ( 0g `  U ) ) )
5352anbi2d 464 . 2  |-  ( ph  ->  ( ( U  e. 
Grp  /\  [  .0.  ]  .~  =  ( 0g
`  U ) )  <-> 
( U  e.  Grp  /\  ( ( u  e.  V  |->  [ u ]  .~  ) `  .0.  )  =  ( 0g `  U ) ) ) )
5449, 53mpbird 167 1  |-  ( ph  ->  ( U  e.  Grp  /\ 
[  .0.  ]  .~  =  ( 0g `  U ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2167   _Vcvv 2763   class class class wbr 4034    |-> cmpt 4095    Fn wfn 5254   ` cfv 5259  (class class class)co 5925    Er wer 6598   [cec 6599   /.cqs 6600   Basecbs 12703   +g cplusg 12780   0gc0g 12958    /.s cqus 13002   Grpcgrp 13202
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-pre-ltirr 8008  ax-pre-lttrn 8010  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-tp 3631  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-er 6601  df-ec 6603  df-qs 6607  df-pnf 8080  df-mnf 8081  df-ltxr 8083  df-inn 9008  df-2 9066  df-3 9067  df-ndx 12706  df-slot 12707  df-base 12709  df-plusg 12793  df-mulr 12794  df-0g 12960  df-iimas 13004  df-qus 13005  df-mgm 13058  df-sgrp 13104  df-mnd 13119  df-grp 13205
This theorem is referenced by:  qusgrp  13438
  Copyright terms: Public domain W3C validator