| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > qusgrp2 | Unicode version | ||
| Description: Prove that a quotient structure is a group. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by Mario Carneiro, 12-Aug-2015.) |
| Ref | Expression |
|---|---|
| qusgrp2.u |
|
| qusgrp2.v |
|
| qusgrp2.p |
|
| qusgrp2.r |
|
| qusgrp2.x |
|
| qusgrp2.e |
|
| qusgrp2.1 |
|
| qusgrp2.2 |
|
| qusgrp2.3 |
|
| qusgrp2.4 |
|
| qusgrp2.5 |
|
| qusgrp2.6 |
|
| Ref | Expression |
|---|---|
| qusgrp2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qusgrp2.u |
. . . 4
| |
| 2 | qusgrp2.v |
. . . 4
| |
| 3 | eqid 2196 |
. . . 4
| |
| 4 | qusgrp2.r |
. . . . 5
| |
| 5 | basfn 12761 |
. . . . . . 7
| |
| 6 | qusgrp2.x |
. . . . . . . 8
| |
| 7 | 6 | elexd 2776 |
. . . . . . 7
|
| 8 | funfvex 5578 |
. . . . . . . 8
| |
| 9 | 8 | funfni 5361 |
. . . . . . 7
|
| 10 | 5, 7, 9 | sylancr 414 |
. . . . . 6
|
| 11 | 2, 10 | eqeltrd 2273 |
. . . . 5
|
| 12 | erex 6625 |
. . . . 5
| |
| 13 | 4, 11, 12 | sylc 62 |
. . . 4
|
| 14 | 1, 2, 3, 13, 6 | qusval 13025 |
. . 3
|
| 15 | qusgrp2.p |
. . 3
| |
| 16 | 1, 2, 3, 13, 6 | quslem 13026 |
. . 3
|
| 17 | qusgrp2.1 |
. . . . 5
| |
| 18 | 17 | 3expb 1206 |
. . . 4
|
| 19 | qusgrp2.e |
. . . 4
| |
| 20 | 4, 11, 3, 18, 19 | ercpbl 13033 |
. . 3
|
| 21 | 4 | adantr 276 |
. . . . 5
|
| 22 | qusgrp2.2 |
. . . . 5
| |
| 23 | 21, 22 | erthi 6649 |
. . . 4
|
| 24 | 11 | adantr 276 |
. . . . 5
|
| 25 | 21, 22 | ercl 6612 |
. . . . 5
|
| 26 | 21, 24, 3, 25 | divsfvalg 13031 |
. . . 4
|
| 27 | 21, 22 | ercl2 6614 |
. . . . 5
|
| 28 | 21, 24, 3, 27 | divsfvalg 13031 |
. . . 4
|
| 29 | 23, 26, 28 | 3eqtr4d 2239 |
. . 3
|
| 30 | qusgrp2.3 |
. . 3
| |
| 31 | 4 | adantr 276 |
. . . . 5
|
| 32 | qusgrp2.4 |
. . . . 5
| |
| 33 | 31, 32 | erthi 6649 |
. . . 4
|
| 34 | 11 | adantr 276 |
. . . . 5
|
| 35 | 31, 32 | ercl 6612 |
. . . . 5
|
| 36 | 31, 34, 3, 35 | divsfvalg 13031 |
. . . 4
|
| 37 | simpr 110 |
. . . . 5
| |
| 38 | 31, 34, 3, 37 | divsfvalg 13031 |
. . . 4
|
| 39 | 33, 36, 38 | 3eqtr4d 2239 |
. . 3
|
| 40 | qusgrp2.5 |
. . 3
| |
| 41 | qusgrp2.6 |
. . . . . 6
| |
| 42 | 31, 41 | ersym 6613 |
. . . . 5
|
| 43 | 31, 42 | erthi 6649 |
. . . 4
|
| 44 | 30 | adantr 276 |
. . . . 5
|
| 45 | 31, 34, 3, 44 | divsfvalg 13031 |
. . . 4
|
| 46 | 31, 41 | ercl 6612 |
. . . . 5
|
| 47 | 31, 34, 3, 46 | divsfvalg 13031 |
. . . 4
|
| 48 | 43, 45, 47 | 3eqtr4rd 2240 |
. . 3
|
| 49 | 14, 2, 15, 16, 20, 6, 17, 29, 30, 39, 40, 48 | imasgrp2 13316 |
. 2
|
| 50 | 4, 11, 3, 30 | divsfvalg 13031 |
. . . . 5
|
| 51 | 50 | eqcomd 2202 |
. . . 4
|
| 52 | 51 | eqeq1d 2205 |
. . 3
|
| 53 | 52 | anbi2d 464 |
. 2
|
| 54 | 49, 53 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-i2m1 8001 ax-0lt1 8002 ax-0id 8004 ax-rnegex 8005 ax-pre-ltirr 8008 ax-pre-lttrn 8010 ax-pre-ltadd 8012 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-tp 3631 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-er 6601 df-ec 6603 df-qs 6607 df-pnf 8080 df-mnf 8081 df-ltxr 8083 df-inn 9008 df-2 9066 df-3 9067 df-ndx 12706 df-slot 12707 df-base 12709 df-plusg 12793 df-mulr 12794 df-0g 12960 df-iimas 13004 df-qus 13005 df-mgm 13058 df-sgrp 13104 df-mnd 13119 df-grp 13205 |
| This theorem is referenced by: qusgrp 13438 |
| Copyright terms: Public domain | W3C validator |