ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qusex Unicode version

Theorem qusex 13272
Description: Existence of a quotient structure. (Contributed by Jim Kingdon, 25-Apr-2025.)
Assertion
Ref Expression
qusex  |-  ( ( R  e.  V  /\  .~  e.  W )  -> 
( R  /.s  .~  )  e.  _V )

Proof of Theorem qusex
Dummy variables  e  r  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2788 . . . 4  |-  ( R  e.  V  ->  R  e.  _V )
21adantr 276 . . 3  |-  ( ( R  e.  V  /\  .~  e.  W )  ->  R  e.  _V )
3 elex 2788 . . . 4  |-  (  .~  e.  W  ->  .~  e.  _V )
43adantl 277 . . 3  |-  ( ( R  e.  V  /\  .~  e.  W )  ->  .~  e.  _V )
5 basfn 13005 . . . . . 6  |-  Base  Fn  _V
6 funfvex 5616 . . . . . . 7  |-  ( ( Fun  Base  /\  R  e. 
dom  Base )  ->  ( Base `  R )  e. 
_V )
76funfni 5395 . . . . . 6  |-  ( (
Base  Fn  _V  /\  R  e.  _V )  ->  ( Base `  R )  e. 
_V )
85, 2, 7sylancr 414 . . . . 5  |-  ( ( R  e.  V  /\  .~  e.  W )  -> 
( Base `  R )  e.  _V )
98mptexd 5834 . . . 4  |-  ( ( R  e.  V  /\  .~  e.  W )  -> 
( x  e.  (
Base `  R )  |->  [ x ]  .~  )  e.  _V )
10 simpl 109 . . . 4  |-  ( ( R  e.  V  /\  .~  e.  W )  ->  R  e.  V )
11 imasex 13252 . . . 4  |-  ( ( ( x  e.  (
Base `  R )  |->  [ x ]  .~  )  e.  _V  /\  R  e.  V )  ->  (
( x  e.  (
Base `  R )  |->  [ x ]  .~  )  "s  R )  e.  _V )
129, 10, 11syl2anc 411 . . 3  |-  ( ( R  e.  V  /\  .~  e.  W )  -> 
( ( x  e.  ( Base `  R
)  |->  [ x ]  .~  )  "s  R )  e.  _V )
13 fveq2 5599 . . . . . 6  |-  ( r  =  R  ->  ( Base `  r )  =  ( Base `  R
) )
1413mpteq1d 4145 . . . . 5  |-  ( r  =  R  ->  (
x  e.  ( Base `  r )  |->  [ x ] e )  =  ( x  e.  (
Base `  R )  |->  [ x ] e ) )
15 id 19 . . . . 5  |-  ( r  =  R  ->  r  =  R )
1614, 15oveq12d 5985 . . . 4  |-  ( r  =  R  ->  (
( x  e.  (
Base `  r )  |->  [ x ] e )  "s  r )  =  ( ( x  e.  (
Base `  R )  |->  [ x ] e )  "s  R ) )
17 eceq2 6680 . . . . . 6  |-  ( e  =  .~  ->  [ x ] e  =  [
x ]  .~  )
1817mpteq2dv 4151 . . . . 5  |-  ( e  =  .~  ->  (
x  e.  ( Base `  R )  |->  [ x ] e )  =  ( x  e.  (
Base `  R )  |->  [ x ]  .~  ) )
1918oveq1d 5982 . . . 4  |-  ( e  =  .~  ->  (
( x  e.  (
Base `  R )  |->  [ x ] e )  "s  R )  =  ( ( x  e.  (
Base `  R )  |->  [ x ]  .~  )  "s  R ) )
20 df-qus 13250 . . . 4  |-  /.s  =  (
r  e.  _V , 
e  e.  _V  |->  ( ( x  e.  (
Base `  r )  |->  [ x ] e )  "s  r ) )
2116, 19, 20ovmpog 6103 . . 3  |-  ( ( R  e.  _V  /\  .~  e.  _V  /\  (
( x  e.  (
Base `  R )  |->  [ x ]  .~  )  "s  R )  e.  _V )  ->  ( R  /.s  .~  )  =  ( ( x  e.  ( Base `  R
)  |->  [ x ]  .~  )  "s  R ) )
222, 4, 12, 21syl3anc 1250 . 2  |-  ( ( R  e.  V  /\  .~  e.  W )  -> 
( R  /.s  .~  )  =  ( ( x  e.  ( Base `  R
)  |->  [ x ]  .~  )  "s  R ) )
2322, 12eqeltrd 2284 1  |-  ( ( R  e.  V  /\  .~  e.  W )  -> 
( R  /.s  .~  )  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178   _Vcvv 2776    |-> cmpt 4121    Fn wfn 5285   ` cfv 5290  (class class class)co 5967   [cec 6641   Basecbs 12947    "s cimas 13246    /.s cqus 13247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1re 8054  ax-addrcl 8057
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-tp 3651  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-ec 6645  df-inn 9072  df-2 9130  df-3 9131  df-ndx 12950  df-slot 12951  df-base 12953  df-plusg 13037  df-mulr 13038  df-iimas 13249  df-qus 13250
This theorem is referenced by:  znval  14513  znle  14514  znbaslemnn  14516
  Copyright terms: Public domain W3C validator