ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qusex Unicode version

Theorem qusex 13027
Description: Existence of a quotient structure. (Contributed by Jim Kingdon, 25-Apr-2025.)
Assertion
Ref Expression
qusex  |-  ( ( R  e.  V  /\  .~  e.  W )  -> 
( R  /.s  .~  )  e.  _V )

Proof of Theorem qusex
Dummy variables  e  r  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2774 . . . 4  |-  ( R  e.  V  ->  R  e.  _V )
21adantr 276 . . 3  |-  ( ( R  e.  V  /\  .~  e.  W )  ->  R  e.  _V )
3 elex 2774 . . . 4  |-  (  .~  e.  W  ->  .~  e.  _V )
43adantl 277 . . 3  |-  ( ( R  e.  V  /\  .~  e.  W )  ->  .~  e.  _V )
5 basfn 12761 . . . . . 6  |-  Base  Fn  _V
6 funfvex 5578 . . . . . . 7  |-  ( ( Fun  Base  /\  R  e. 
dom  Base )  ->  ( Base `  R )  e. 
_V )
76funfni 5361 . . . . . 6  |-  ( (
Base  Fn  _V  /\  R  e.  _V )  ->  ( Base `  R )  e. 
_V )
85, 2, 7sylancr 414 . . . . 5  |-  ( ( R  e.  V  /\  .~  e.  W )  -> 
( Base `  R )  e.  _V )
98mptexd 5792 . . . 4  |-  ( ( R  e.  V  /\  .~  e.  W )  -> 
( x  e.  (
Base `  R )  |->  [ x ]  .~  )  e.  _V )
10 simpl 109 . . . 4  |-  ( ( R  e.  V  /\  .~  e.  W )  ->  R  e.  V )
11 imasex 13007 . . . 4  |-  ( ( ( x  e.  (
Base `  R )  |->  [ x ]  .~  )  e.  _V  /\  R  e.  V )  ->  (
( x  e.  (
Base `  R )  |->  [ x ]  .~  )  "s  R )  e.  _V )
129, 10, 11syl2anc 411 . . 3  |-  ( ( R  e.  V  /\  .~  e.  W )  -> 
( ( x  e.  ( Base `  R
)  |->  [ x ]  .~  )  "s  R )  e.  _V )
13 fveq2 5561 . . . . . 6  |-  ( r  =  R  ->  ( Base `  r )  =  ( Base `  R
) )
1413mpteq1d 4119 . . . . 5  |-  ( r  =  R  ->  (
x  e.  ( Base `  r )  |->  [ x ] e )  =  ( x  e.  (
Base `  R )  |->  [ x ] e ) )
15 id 19 . . . . 5  |-  ( r  =  R  ->  r  =  R )
1614, 15oveq12d 5943 . . . 4  |-  ( r  =  R  ->  (
( x  e.  (
Base `  r )  |->  [ x ] e )  "s  r )  =  ( ( x  e.  (
Base `  R )  |->  [ x ] e )  "s  R ) )
17 eceq2 6638 . . . . . 6  |-  ( e  =  .~  ->  [ x ] e  =  [
x ]  .~  )
1817mpteq2dv 4125 . . . . 5  |-  ( e  =  .~  ->  (
x  e.  ( Base `  R )  |->  [ x ] e )  =  ( x  e.  (
Base `  R )  |->  [ x ]  .~  ) )
1918oveq1d 5940 . . . 4  |-  ( e  =  .~  ->  (
( x  e.  (
Base `  R )  |->  [ x ] e )  "s  R )  =  ( ( x  e.  (
Base `  R )  |->  [ x ]  .~  )  "s  R ) )
20 df-qus 13005 . . . 4  |-  /.s  =  (
r  e.  _V , 
e  e.  _V  |->  ( ( x  e.  (
Base `  r )  |->  [ x ] e )  "s  r ) )
2116, 19, 20ovmpog 6061 . . 3  |-  ( ( R  e.  _V  /\  .~  e.  _V  /\  (
( x  e.  (
Base `  R )  |->  [ x ]  .~  )  "s  R )  e.  _V )  ->  ( R  /.s  .~  )  =  ( ( x  e.  ( Base `  R
)  |->  [ x ]  .~  )  "s  R ) )
222, 4, 12, 21syl3anc 1249 . 2  |-  ( ( R  e.  V  /\  .~  e.  W )  -> 
( R  /.s  .~  )  =  ( ( x  e.  ( Base `  R
)  |->  [ x ]  .~  )  "s  R ) )
2322, 12eqeltrd 2273 1  |-  ( ( R  e.  V  /\  .~  e.  W )  -> 
( R  /.s  .~  )  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   _Vcvv 2763    |-> cmpt 4095    Fn wfn 5254   ` cfv 5259  (class class class)co 5925   [cec 6599   Basecbs 12703    "s cimas 13001    /.s cqus 13002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1re 7990  ax-addrcl 7993
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-tp 3631  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-ec 6603  df-inn 9008  df-2 9066  df-3 9067  df-ndx 12706  df-slot 12707  df-base 12709  df-plusg 12793  df-mulr 12794  df-iimas 13004  df-qus 13005
This theorem is referenced by:  znval  14268  znle  14269  znbaslemnn  14271
  Copyright terms: Public domain W3C validator