ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qusex Unicode version

Theorem qusex 12764
Description: Existence of a quotient structure. (Contributed by Jim Kingdon, 25-Apr-2025.)
Assertion
Ref Expression
qusex  |-  ( ( R  e.  V  /\  .~  e.  W )  -> 
( R  /.s  .~  )  e.  _V )

Proof of Theorem qusex
Dummy variables  e  r  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2760 . . . 4  |-  ( R  e.  V  ->  R  e.  _V )
21adantr 276 . . 3  |-  ( ( R  e.  V  /\  .~  e.  W )  ->  R  e.  _V )
3 elex 2760 . . . 4  |-  (  .~  e.  W  ->  .~  e.  _V )
43adantl 277 . . 3  |-  ( ( R  e.  V  /\  .~  e.  W )  ->  .~  e.  _V )
5 basfn 12534 . . . . . 6  |-  Base  Fn  _V
6 funfvex 5544 . . . . . . 7  |-  ( ( Fun  Base  /\  R  e. 
dom  Base )  ->  ( Base `  R )  e. 
_V )
76funfni 5328 . . . . . 6  |-  ( (
Base  Fn  _V  /\  R  e.  _V )  ->  ( Base `  R )  e. 
_V )
85, 2, 7sylancr 414 . . . . 5  |-  ( ( R  e.  V  /\  .~  e.  W )  -> 
( Base `  R )  e.  _V )
98mptexd 5756 . . . 4  |-  ( ( R  e.  V  /\  .~  e.  W )  -> 
( x  e.  (
Base `  R )  |->  [ x ]  .~  )  e.  _V )
10 simpl 109 . . . 4  |-  ( ( R  e.  V  /\  .~  e.  W )  ->  R  e.  V )
11 imasex 12744 . . . 4  |-  ( ( ( x  e.  (
Base `  R )  |->  [ x ]  .~  )  e.  _V  /\  R  e.  V )  ->  (
( x  e.  (
Base `  R )  |->  [ x ]  .~  )  "s  R )  e.  _V )
129, 10, 11syl2anc 411 . . 3  |-  ( ( R  e.  V  /\  .~  e.  W )  -> 
( ( x  e.  ( Base `  R
)  |->  [ x ]  .~  )  "s  R )  e.  _V )
13 fveq2 5527 . . . . . 6  |-  ( r  =  R  ->  ( Base `  r )  =  ( Base `  R
) )
1413mpteq1d 4100 . . . . 5  |-  ( r  =  R  ->  (
x  e.  ( Base `  r )  |->  [ x ] e )  =  ( x  e.  (
Base `  R )  |->  [ x ] e ) )
15 id 19 . . . . 5  |-  ( r  =  R  ->  r  =  R )
1614, 15oveq12d 5906 . . . 4  |-  ( r  =  R  ->  (
( x  e.  (
Base `  r )  |->  [ x ] e )  "s  r )  =  ( ( x  e.  (
Base `  R )  |->  [ x ] e )  "s  R ) )
17 eceq2 6586 . . . . . 6  |-  ( e  =  .~  ->  [ x ] e  =  [
x ]  .~  )
1817mpteq2dv 4106 . . . . 5  |-  ( e  =  .~  ->  (
x  e.  ( Base `  R )  |->  [ x ] e )  =  ( x  e.  (
Base `  R )  |->  [ x ]  .~  ) )
1918oveq1d 5903 . . . 4  |-  ( e  =  .~  ->  (
( x  e.  (
Base `  R )  |->  [ x ] e )  "s  R )  =  ( ( x  e.  (
Base `  R )  |->  [ x ]  .~  )  "s  R ) )
20 df-qus 12742 . . . 4  |-  /.s  =  (
r  e.  _V , 
e  e.  _V  |->  ( ( x  e.  (
Base `  r )  |->  [ x ] e )  "s  r ) )
2116, 19, 20ovmpog 6023 . . 3  |-  ( ( R  e.  _V  /\  .~  e.  _V  /\  (
( x  e.  (
Base `  R )  |->  [ x ]  .~  )  "s  R )  e.  _V )  ->  ( R  /.s  .~  )  =  ( ( x  e.  ( Base `  R
)  |->  [ x ]  .~  )  "s  R ) )
222, 4, 12, 21syl3anc 1248 . 2  |-  ( ( R  e.  V  /\  .~  e.  W )  -> 
( R  /.s  .~  )  =  ( ( x  e.  ( Base `  R
)  |->  [ x ]  .~  )  "s  R ) )
2322, 12eqeltrd 2264 1  |-  ( ( R  e.  V  /\  .~  e.  W )  -> 
( R  /.s  .~  )  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1363    e. wcel 2158   _Vcvv 2749    |-> cmpt 4076    Fn wfn 5223   ` cfv 5228  (class class class)co 5888   [cec 6547   Basecbs 12476    "s cimas 12738    /.s cqus 12739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-cnex 7916  ax-resscn 7917  ax-1re 7919  ax-addrcl 7922
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-ral 2470  df-rex 2471  df-reu 2472  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-tp 3612  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-ov 5891  df-oprab 5892  df-mpo 5893  df-ec 6551  df-inn 8934  df-2 8992  df-3 8993  df-ndx 12479  df-slot 12480  df-base 12482  df-plusg 12564  df-mulr 12565  df-iimas 12741  df-qus 12742
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator