ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qusex Unicode version

Theorem qusex 12911
Description: Existence of a quotient structure. (Contributed by Jim Kingdon, 25-Apr-2025.)
Assertion
Ref Expression
qusex  |-  ( ( R  e.  V  /\  .~  e.  W )  -> 
( R  /.s  .~  )  e.  _V )

Proof of Theorem qusex
Dummy variables  e  r  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2771 . . . 4  |-  ( R  e.  V  ->  R  e.  _V )
21adantr 276 . . 3  |-  ( ( R  e.  V  /\  .~  e.  W )  ->  R  e.  _V )
3 elex 2771 . . . 4  |-  (  .~  e.  W  ->  .~  e.  _V )
43adantl 277 . . 3  |-  ( ( R  e.  V  /\  .~  e.  W )  ->  .~  e.  _V )
5 basfn 12679 . . . . . 6  |-  Base  Fn  _V
6 funfvex 5572 . . . . . . 7  |-  ( ( Fun  Base  /\  R  e. 
dom  Base )  ->  ( Base `  R )  e. 
_V )
76funfni 5355 . . . . . 6  |-  ( (
Base  Fn  _V  /\  R  e.  _V )  ->  ( Base `  R )  e. 
_V )
85, 2, 7sylancr 414 . . . . 5  |-  ( ( R  e.  V  /\  .~  e.  W )  -> 
( Base `  R )  e.  _V )
98mptexd 5786 . . . 4  |-  ( ( R  e.  V  /\  .~  e.  W )  -> 
( x  e.  (
Base `  R )  |->  [ x ]  .~  )  e.  _V )
10 simpl 109 . . . 4  |-  ( ( R  e.  V  /\  .~  e.  W )  ->  R  e.  V )
11 imasex 12891 . . . 4  |-  ( ( ( x  e.  (
Base `  R )  |->  [ x ]  .~  )  e.  _V  /\  R  e.  V )  ->  (
( x  e.  (
Base `  R )  |->  [ x ]  .~  )  "s  R )  e.  _V )
129, 10, 11syl2anc 411 . . 3  |-  ( ( R  e.  V  /\  .~  e.  W )  -> 
( ( x  e.  ( Base `  R
)  |->  [ x ]  .~  )  "s  R )  e.  _V )
13 fveq2 5555 . . . . . 6  |-  ( r  =  R  ->  ( Base `  r )  =  ( Base `  R
) )
1413mpteq1d 4115 . . . . 5  |-  ( r  =  R  ->  (
x  e.  ( Base `  r )  |->  [ x ] e )  =  ( x  e.  (
Base `  R )  |->  [ x ] e ) )
15 id 19 . . . . 5  |-  ( r  =  R  ->  r  =  R )
1614, 15oveq12d 5937 . . . 4  |-  ( r  =  R  ->  (
( x  e.  (
Base `  r )  |->  [ x ] e )  "s  r )  =  ( ( x  e.  (
Base `  R )  |->  [ x ] e )  "s  R ) )
17 eceq2 6626 . . . . . 6  |-  ( e  =  .~  ->  [ x ] e  =  [
x ]  .~  )
1817mpteq2dv 4121 . . . . 5  |-  ( e  =  .~  ->  (
x  e.  ( Base `  R )  |->  [ x ] e )  =  ( x  e.  (
Base `  R )  |->  [ x ]  .~  ) )
1918oveq1d 5934 . . . 4  |-  ( e  =  .~  ->  (
( x  e.  (
Base `  R )  |->  [ x ] e )  "s  R )  =  ( ( x  e.  (
Base `  R )  |->  [ x ]  .~  )  "s  R ) )
20 df-qus 12889 . . . 4  |-  /.s  =  (
r  e.  _V , 
e  e.  _V  |->  ( ( x  e.  (
Base `  r )  |->  [ x ] e )  "s  r ) )
2116, 19, 20ovmpog 6054 . . 3  |-  ( ( R  e.  _V  /\  .~  e.  _V  /\  (
( x  e.  (
Base `  R )  |->  [ x ]  .~  )  "s  R )  e.  _V )  ->  ( R  /.s  .~  )  =  ( ( x  e.  ( Base `  R
)  |->  [ x ]  .~  )  "s  R ) )
222, 4, 12, 21syl3anc 1249 . 2  |-  ( ( R  e.  V  /\  .~  e.  W )  -> 
( R  /.s  .~  )  =  ( ( x  e.  ( Base `  R
)  |->  [ x ]  .~  )  "s  R ) )
2322, 12eqeltrd 2270 1  |-  ( ( R  e.  V  /\  .~  e.  W )  -> 
( R  /.s  .~  )  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   _Vcvv 2760    |-> cmpt 4091    Fn wfn 5250   ` cfv 5255  (class class class)co 5919   [cec 6587   Basecbs 12621    "s cimas 12885    /.s cqus 12886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1re 7968  ax-addrcl 7971
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-tp 3627  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-ec 6591  df-inn 8985  df-2 9043  df-3 9044  df-ndx 12624  df-slot 12625  df-base 12627  df-plusg 12711  df-mulr 12712  df-iimas 12888  df-qus 12889
This theorem is referenced by:  znval  14135  znle  14136  znbaslemnn  14138
  Copyright terms: Public domain W3C validator