ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qusrng Unicode version

Theorem qusrng 13638
Description: The quotient structure of a non-unital ring is a non-unital ring (qusring2 13746 analog). (Contributed by AV, 23-Feb-2025.)
Hypotheses
Ref Expression
qusrng.u  |-  ( ph  ->  U  =  ( R 
/.s  .~  ) )
qusrng.v  |-  ( ph  ->  V  =  ( Base `  R ) )
qusrng.p  |-  .+  =  ( +g  `  R )
qusrng.t  |-  .x.  =  ( .r `  R )
qusrng.r  |-  ( ph  ->  .~  Er  V )
qusrng.e1  |-  ( ph  ->  ( ( a  .~  p  /\  b  .~  q
)  ->  ( a  .+  b )  .~  (
p  .+  q )
) )
qusrng.e2  |-  ( ph  ->  ( ( a  .~  p  /\  b  .~  q
)  ->  ( a  .x.  b )  .~  (
p  .x.  q )
) )
qusrng.x  |-  ( ph  ->  R  e. Rng )
Assertion
Ref Expression
qusrng  |-  ( ph  ->  U  e. Rng )
Distinct variable groups:    R, a, b, p, q    U, a, b, p, q    V, a, b, p, q    .~ , a, b, p, q    .+ , p, q    .x. , p, q    ph, a,
b, p, q
Allowed substitution hints:    .+ ( a, b)    .x. ( a, b)

Proof of Theorem qusrng
Dummy variables  u  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qusrng.u . . 3  |-  ( ph  ->  U  =  ( R 
/.s  .~  ) )
2 qusrng.v . . 3  |-  ( ph  ->  V  =  ( Base `  R ) )
3 eqid 2204 . . 3  |-  ( u  e.  V  |->  [ u ]  .~  )  =  ( u  e.  V  |->  [ u ]  .~  )
4 qusrng.r . . . 4  |-  ( ph  ->  .~  Er  V )
5 basfn 12809 . . . . . 6  |-  Base  Fn  _V
6 qusrng.x . . . . . . 7  |-  ( ph  ->  R  e. Rng )
76elexd 2784 . . . . . 6  |-  ( ph  ->  R  e.  _V )
8 funfvex 5587 . . . . . . 7  |-  ( ( Fun  Base  /\  R  e. 
dom  Base )  ->  ( Base `  R )  e. 
_V )
98funfni 5370 . . . . . 6  |-  ( (
Base  Fn  _V  /\  R  e.  _V )  ->  ( Base `  R )  e. 
_V )
105, 7, 9sylancr 414 . . . . 5  |-  ( ph  ->  ( Base `  R
)  e.  _V )
112, 10eqeltrd 2281 . . . 4  |-  ( ph  ->  V  e.  _V )
12 erex 6634 . . . 4  |-  (  .~  Er  V  ->  ( V  e.  _V  ->  .~  e.  _V ) )
134, 11, 12sylc 62 . . 3  |-  ( ph  ->  .~  e.  _V )
141, 2, 3, 13, 6qusval 13073 . 2  |-  ( ph  ->  U  =  ( ( u  e.  V  |->  [ u ]  .~  )  "s  R ) )
15 qusrng.p . 2  |-  .+  =  ( +g  `  R )
16 qusrng.t . 2  |-  .x.  =  ( .r `  R )
171, 2, 3, 13, 6quslem 13074 . 2  |-  ( ph  ->  ( u  e.  V  |->  [ u ]  .~  ) : V -onto-> ( V /.  .~  ) )
186adantr 276 . . . . 5  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V ) )  ->  R  e. Rng )
19 simprl 529 . . . . . 6  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V ) )  ->  x  e.  V )
202eleq2d 2274 . . . . . . 7  |-  ( ph  ->  ( x  e.  V  <->  x  e.  ( Base `  R
) ) )
2120adantr 276 . . . . . 6  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V ) )  -> 
( x  e.  V  <->  x  e.  ( Base `  R
) ) )
2219, 21mpbid 147 . . . . 5  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V ) )  ->  x  e.  ( Base `  R ) )
23 simprr 531 . . . . . 6  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V ) )  -> 
y  e.  V )
242eleq2d 2274 . . . . . . 7  |-  ( ph  ->  ( y  e.  V  <->  y  e.  ( Base `  R
) ) )
2524adantr 276 . . . . . 6  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V ) )  -> 
( y  e.  V  <->  y  e.  ( Base `  R
) ) )
2623, 25mpbid 147 . . . . 5  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V ) )  -> 
y  e.  ( Base `  R ) )
27 eqid 2204 . . . . . 6  |-  ( Base `  R )  =  (
Base `  R )
2827, 15rngacl 13622 . . . . 5  |-  ( ( R  e. Rng  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  ->  ( x  .+  y )  e.  (
Base `  R )
)
2918, 22, 26, 28syl3anc 1249 . . . 4  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V ) )  -> 
( x  .+  y
)  e.  ( Base `  R ) )
302eleq2d 2274 . . . . 5  |-  ( ph  ->  ( ( x  .+  y )  e.  V  <->  ( x  .+  y )  e.  ( Base `  R
) ) )
3130adantr 276 . . . 4  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V ) )  -> 
( ( x  .+  y )  e.  V  <->  ( x  .+  y )  e.  ( Base `  R
) ) )
3229, 31mpbird 167 . . 3  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V ) )  -> 
( x  .+  y
)  e.  V )
33 qusrng.e1 . . 3  |-  ( ph  ->  ( ( a  .~  p  /\  b  .~  q
)  ->  ( a  .+  b )  .~  (
p  .+  q )
) )
344, 11, 3, 32, 33ercpbl 13081 . 2  |-  ( (
ph  /\  ( a  e.  V  /\  b  e.  V )  /\  (
p  e.  V  /\  q  e.  V )
)  ->  ( (
( ( u  e.  V  |->  [ u ]  .~  ) `  a )  =  ( ( u  e.  V  |->  [ u ]  .~  ) `  p
)  /\  ( (
u  e.  V  |->  [ u ]  .~  ) `  b )  =  ( ( u  e.  V  |->  [ u ]  .~  ) `  q )
)  ->  ( (
u  e.  V  |->  [ u ]  .~  ) `  ( a  .+  b
) )  =  ( ( u  e.  V  |->  [ u ]  .~  ) `  ( p  .+  q ) ) ) )
3527, 16rngcl 13624 . . . . 5  |-  ( ( R  e. Rng  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  ->  ( x  .x.  y )  e.  (
Base `  R )
)
3618, 22, 26, 35syl3anc 1249 . . . 4  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V ) )  -> 
( x  .x.  y
)  e.  ( Base `  R ) )
372eleq2d 2274 . . . . 5  |-  ( ph  ->  ( ( x  .x.  y )  e.  V  <->  ( x  .x.  y )  e.  ( Base `  R
) ) )
3837adantr 276 . . . 4  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V ) )  -> 
( ( x  .x.  y )  e.  V  <->  ( x  .x.  y )  e.  ( Base `  R
) ) )
3936, 38mpbird 167 . . 3  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V ) )  -> 
( x  .x.  y
)  e.  V )
40 qusrng.e2 . . 3  |-  ( ph  ->  ( ( a  .~  p  /\  b  .~  q
)  ->  ( a  .x.  b )  .~  (
p  .x.  q )
) )
414, 11, 3, 39, 40ercpbl 13081 . 2  |-  ( (
ph  /\  ( a  e.  V  /\  b  e.  V )  /\  (
p  e.  V  /\  q  e.  V )
)  ->  ( (
( ( u  e.  V  |->  [ u ]  .~  ) `  a )  =  ( ( u  e.  V  |->  [ u ]  .~  ) `  p
)  /\  ( (
u  e.  V  |->  [ u ]  .~  ) `  b )  =  ( ( u  e.  V  |->  [ u ]  .~  ) `  q )
)  ->  ( (
u  e.  V  |->  [ u ]  .~  ) `  ( a  .x.  b
) )  =  ( ( u  e.  V  |->  [ u ]  .~  ) `  ( p  .x.  q ) ) ) )
4214, 2, 15, 16, 17, 34, 41, 6imasrng 13636 1  |-  ( ph  ->  U  e. Rng )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1372    e. wcel 2175   _Vcvv 2771   class class class wbr 4043    |-> cmpt 4104    Fn wfn 5263   ` cfv 5268  (class class class)co 5934    Er wer 6607   [cec 6608   /.cqs 6609   Basecbs 12751   +g cplusg 12828   .rcmulr 12829    /.s cqus 13050  Rngcrng 13612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-cnex 7998  ax-resscn 7999  ax-1cn 8000  ax-1re 8001  ax-icn 8002  ax-addcl 8003  ax-addrcl 8004  ax-mulcl 8005  ax-addcom 8007  ax-addass 8009  ax-i2m1 8012  ax-0lt1 8013  ax-0id 8015  ax-rnegex 8016  ax-pre-ltirr 8019  ax-pre-lttrn 8021  ax-pre-ltadd 8023
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-tp 3640  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4338  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-riota 5889  df-ov 5937  df-oprab 5938  df-mpo 5939  df-er 6610  df-ec 6612  df-qs 6616  df-pnf 8091  df-mnf 8092  df-ltxr 8094  df-inn 9019  df-2 9077  df-3 9078  df-ndx 12754  df-slot 12755  df-base 12757  df-sets 12758  df-plusg 12841  df-mulr 12842  df-0g 13008  df-iimas 13052  df-qus 13053  df-mgm 13106  df-sgrp 13152  df-mnd 13167  df-grp 13253  df-minusg 13254  df-cmn 13540  df-abl 13541  df-mgp 13601  df-rng 13613
This theorem is referenced by:  qus2idrng  14205
  Copyright terms: Public domain W3C validator