ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qusrng Unicode version

Theorem qusrng 13457
Description: The quotient structure of a non-unital ring is a non-unital ring (qusring2 13565 analog). (Contributed by AV, 23-Feb-2025.)
Hypotheses
Ref Expression
qusrng.u  |-  ( ph  ->  U  =  ( R 
/.s  .~  ) )
qusrng.v  |-  ( ph  ->  V  =  ( Base `  R ) )
qusrng.p  |-  .+  =  ( +g  `  R )
qusrng.t  |-  .x.  =  ( .r `  R )
qusrng.r  |-  ( ph  ->  .~  Er  V )
qusrng.e1  |-  ( ph  ->  ( ( a  .~  p  /\  b  .~  q
)  ->  ( a  .+  b )  .~  (
p  .+  q )
) )
qusrng.e2  |-  ( ph  ->  ( ( a  .~  p  /\  b  .~  q
)  ->  ( a  .x.  b )  .~  (
p  .x.  q )
) )
qusrng.x  |-  ( ph  ->  R  e. Rng )
Assertion
Ref Expression
qusrng  |-  ( ph  ->  U  e. Rng )
Distinct variable groups:    R, a, b, p, q    U, a, b, p, q    V, a, b, p, q    .~ , a, b, p, q    .+ , p, q    .x. , p, q    ph, a,
b, p, q
Allowed substitution hints:    .+ ( a, b)    .x. ( a, b)

Proof of Theorem qusrng
Dummy variables  u  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qusrng.u . . 3  |-  ( ph  ->  U  =  ( R 
/.s  .~  ) )
2 qusrng.v . . 3  |-  ( ph  ->  V  =  ( Base `  R ) )
3 eqid 2193 . . 3  |-  ( u  e.  V  |->  [ u ]  .~  )  =  ( u  e.  V  |->  [ u ]  .~  )
4 qusrng.r . . . 4  |-  ( ph  ->  .~  Er  V )
5 basfn 12679 . . . . . 6  |-  Base  Fn  _V
6 qusrng.x . . . . . . 7  |-  ( ph  ->  R  e. Rng )
76elexd 2773 . . . . . 6  |-  ( ph  ->  R  e.  _V )
8 funfvex 5572 . . . . . . 7  |-  ( ( Fun  Base  /\  R  e. 
dom  Base )  ->  ( Base `  R )  e. 
_V )
98funfni 5355 . . . . . 6  |-  ( (
Base  Fn  _V  /\  R  e.  _V )  ->  ( Base `  R )  e. 
_V )
105, 7, 9sylancr 414 . . . . 5  |-  ( ph  ->  ( Base `  R
)  e.  _V )
112, 10eqeltrd 2270 . . . 4  |-  ( ph  ->  V  e.  _V )
12 erex 6613 . . . 4  |-  (  .~  Er  V  ->  ( V  e.  _V  ->  .~  e.  _V ) )
134, 11, 12sylc 62 . . 3  |-  ( ph  ->  .~  e.  _V )
141, 2, 3, 13, 6qusval 12909 . 2  |-  ( ph  ->  U  =  ( ( u  e.  V  |->  [ u ]  .~  )  "s  R ) )
15 qusrng.p . 2  |-  .+  =  ( +g  `  R )
16 qusrng.t . 2  |-  .x.  =  ( .r `  R )
171, 2, 3, 13, 6quslem 12910 . 2  |-  ( ph  ->  ( u  e.  V  |->  [ u ]  .~  ) : V -onto-> ( V /.  .~  ) )
186adantr 276 . . . . 5  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V ) )  ->  R  e. Rng )
19 simprl 529 . . . . . 6  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V ) )  ->  x  e.  V )
202eleq2d 2263 . . . . . . 7  |-  ( ph  ->  ( x  e.  V  <->  x  e.  ( Base `  R
) ) )
2120adantr 276 . . . . . 6  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V ) )  -> 
( x  e.  V  <->  x  e.  ( Base `  R
) ) )
2219, 21mpbid 147 . . . . 5  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V ) )  ->  x  e.  ( Base `  R ) )
23 simprr 531 . . . . . 6  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V ) )  -> 
y  e.  V )
242eleq2d 2263 . . . . . . 7  |-  ( ph  ->  ( y  e.  V  <->  y  e.  ( Base `  R
) ) )
2524adantr 276 . . . . . 6  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V ) )  -> 
( y  e.  V  <->  y  e.  ( Base `  R
) ) )
2623, 25mpbid 147 . . . . 5  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V ) )  -> 
y  e.  ( Base `  R ) )
27 eqid 2193 . . . . . 6  |-  ( Base `  R )  =  (
Base `  R )
2827, 15rngacl 13441 . . . . 5  |-  ( ( R  e. Rng  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  ->  ( x  .+  y )  e.  (
Base `  R )
)
2918, 22, 26, 28syl3anc 1249 . . . 4  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V ) )  -> 
( x  .+  y
)  e.  ( Base `  R ) )
302eleq2d 2263 . . . . 5  |-  ( ph  ->  ( ( x  .+  y )  e.  V  <->  ( x  .+  y )  e.  ( Base `  R
) ) )
3130adantr 276 . . . 4  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V ) )  -> 
( ( x  .+  y )  e.  V  <->  ( x  .+  y )  e.  ( Base `  R
) ) )
3229, 31mpbird 167 . . 3  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V ) )  -> 
( x  .+  y
)  e.  V )
33 qusrng.e1 . . 3  |-  ( ph  ->  ( ( a  .~  p  /\  b  .~  q
)  ->  ( a  .+  b )  .~  (
p  .+  q )
) )
344, 11, 3, 32, 33ercpbl 12917 . 2  |-  ( (
ph  /\  ( a  e.  V  /\  b  e.  V )  /\  (
p  e.  V  /\  q  e.  V )
)  ->  ( (
( ( u  e.  V  |->  [ u ]  .~  ) `  a )  =  ( ( u  e.  V  |->  [ u ]  .~  ) `  p
)  /\  ( (
u  e.  V  |->  [ u ]  .~  ) `  b )  =  ( ( u  e.  V  |->  [ u ]  .~  ) `  q )
)  ->  ( (
u  e.  V  |->  [ u ]  .~  ) `  ( a  .+  b
) )  =  ( ( u  e.  V  |->  [ u ]  .~  ) `  ( p  .+  q ) ) ) )
3527, 16rngcl 13443 . . . . 5  |-  ( ( R  e. Rng  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  ->  ( x  .x.  y )  e.  (
Base `  R )
)
3618, 22, 26, 35syl3anc 1249 . . . 4  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V ) )  -> 
( x  .x.  y
)  e.  ( Base `  R ) )
372eleq2d 2263 . . . . 5  |-  ( ph  ->  ( ( x  .x.  y )  e.  V  <->  ( x  .x.  y )  e.  ( Base `  R
) ) )
3837adantr 276 . . . 4  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V ) )  -> 
( ( x  .x.  y )  e.  V  <->  ( x  .x.  y )  e.  ( Base `  R
) ) )
3936, 38mpbird 167 . . 3  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V ) )  -> 
( x  .x.  y
)  e.  V )
40 qusrng.e2 . . 3  |-  ( ph  ->  ( ( a  .~  p  /\  b  .~  q
)  ->  ( a  .x.  b )  .~  (
p  .x.  q )
) )
414, 11, 3, 39, 40ercpbl 12917 . 2  |-  ( (
ph  /\  ( a  e.  V  /\  b  e.  V )  /\  (
p  e.  V  /\  q  e.  V )
)  ->  ( (
( ( u  e.  V  |->  [ u ]  .~  ) `  a )  =  ( ( u  e.  V  |->  [ u ]  .~  ) `  p
)  /\  ( (
u  e.  V  |->  [ u ]  .~  ) `  b )  =  ( ( u  e.  V  |->  [ u ]  .~  ) `  q )
)  ->  ( (
u  e.  V  |->  [ u ]  .~  ) `  ( a  .x.  b
) )  =  ( ( u  e.  V  |->  [ u ]  .~  ) `  ( p  .x.  q ) ) ) )
4214, 2, 15, 16, 17, 34, 41, 6imasrng 13455 1  |-  ( ph  ->  U  e. Rng )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   _Vcvv 2760   class class class wbr 4030    |-> cmpt 4091    Fn wfn 5250   ` cfv 5255  (class class class)co 5919    Er wer 6586   [cec 6587   /.cqs 6588   Basecbs 12621   +g cplusg 12698   .rcmulr 12699    /.s cqus 12886  Rngcrng 13431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-pre-ltirr 7986  ax-pre-lttrn 7988  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-tp 3627  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-er 6589  df-ec 6591  df-qs 6595  df-pnf 8058  df-mnf 8059  df-ltxr 8061  df-inn 8985  df-2 9043  df-3 9044  df-ndx 12624  df-slot 12625  df-base 12627  df-sets 12628  df-plusg 12711  df-mulr 12712  df-0g 12872  df-iimas 12888  df-qus 12889  df-mgm 12942  df-sgrp 12988  df-mnd 13001  df-grp 13078  df-minusg 13079  df-cmn 13359  df-abl 13360  df-mgp 13420  df-rng 13432
This theorem is referenced by:  qus2idrng  14024
  Copyright terms: Public domain W3C validator