| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > qusrng | Unicode version | ||
| Description: The quotient structure of a non-unital ring is a non-unital ring (qusring2 13698 analog). (Contributed by AV, 23-Feb-2025.) |
| Ref | Expression |
|---|---|
| qusrng.u |
|
| qusrng.v |
|
| qusrng.p |
|
| qusrng.t |
|
| qusrng.r |
|
| qusrng.e1 |
|
| qusrng.e2 |
|
| qusrng.x |
|
| Ref | Expression |
|---|---|
| qusrng |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qusrng.u |
. . 3
| |
| 2 | qusrng.v |
. . 3
| |
| 3 | eqid 2196 |
. . 3
| |
| 4 | qusrng.r |
. . . 4
| |
| 5 | basfn 12761 |
. . . . . 6
| |
| 6 | qusrng.x |
. . . . . . 7
| |
| 7 | 6 | elexd 2776 |
. . . . . 6
|
| 8 | funfvex 5578 |
. . . . . . 7
| |
| 9 | 8 | funfni 5361 |
. . . . . 6
|
| 10 | 5, 7, 9 | sylancr 414 |
. . . . 5
|
| 11 | 2, 10 | eqeltrd 2273 |
. . . 4
|
| 12 | erex 6625 |
. . . 4
| |
| 13 | 4, 11, 12 | sylc 62 |
. . 3
|
| 14 | 1, 2, 3, 13, 6 | qusval 13025 |
. 2
|
| 15 | qusrng.p |
. 2
| |
| 16 | qusrng.t |
. 2
| |
| 17 | 1, 2, 3, 13, 6 | quslem 13026 |
. 2
|
| 18 | 6 | adantr 276 |
. . . . 5
|
| 19 | simprl 529 |
. . . . . 6
| |
| 20 | 2 | eleq2d 2266 |
. . . . . . 7
|
| 21 | 20 | adantr 276 |
. . . . . 6
|
| 22 | 19, 21 | mpbid 147 |
. . . . 5
|
| 23 | simprr 531 |
. . . . . 6
| |
| 24 | 2 | eleq2d 2266 |
. . . . . . 7
|
| 25 | 24 | adantr 276 |
. . . . . 6
|
| 26 | 23, 25 | mpbid 147 |
. . . . 5
|
| 27 | eqid 2196 |
. . . . . 6
| |
| 28 | 27, 15 | rngacl 13574 |
. . . . 5
|
| 29 | 18, 22, 26, 28 | syl3anc 1249 |
. . . 4
|
| 30 | 2 | eleq2d 2266 |
. . . . 5
|
| 31 | 30 | adantr 276 |
. . . 4
|
| 32 | 29, 31 | mpbird 167 |
. . 3
|
| 33 | qusrng.e1 |
. . 3
| |
| 34 | 4, 11, 3, 32, 33 | ercpbl 13033 |
. 2
|
| 35 | 27, 16 | rngcl 13576 |
. . . . 5
|
| 36 | 18, 22, 26, 35 | syl3anc 1249 |
. . . 4
|
| 37 | 2 | eleq2d 2266 |
. . . . 5
|
| 38 | 37 | adantr 276 |
. . . 4
|
| 39 | 36, 38 | mpbird 167 |
. . 3
|
| 40 | qusrng.e2 |
. . 3
| |
| 41 | 4, 11, 3, 39, 40 | ercpbl 13033 |
. 2
|
| 42 | 14, 2, 15, 16, 17, 34, 41, 6 | imasrng 13588 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-i2m1 8001 ax-0lt1 8002 ax-0id 8004 ax-rnegex 8005 ax-pre-ltirr 8008 ax-pre-lttrn 8010 ax-pre-ltadd 8012 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-tp 3631 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-er 6601 df-ec 6603 df-qs 6607 df-pnf 8080 df-mnf 8081 df-ltxr 8083 df-inn 9008 df-2 9066 df-3 9067 df-ndx 12706 df-slot 12707 df-base 12709 df-sets 12710 df-plusg 12793 df-mulr 12794 df-0g 12960 df-iimas 13004 df-qus 13005 df-mgm 13058 df-sgrp 13104 df-mnd 13119 df-grp 13205 df-minusg 13206 df-cmn 13492 df-abl 13493 df-mgp 13553 df-rng 13565 |
| This theorem is referenced by: qus2idrng 14157 |
| Copyright terms: Public domain | W3C validator |