ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qusrng Unicode version

Theorem qusrng 13514
Description: The quotient structure of a non-unital ring is a non-unital ring (qusring2 13622 analog). (Contributed by AV, 23-Feb-2025.)
Hypotheses
Ref Expression
qusrng.u  |-  ( ph  ->  U  =  ( R 
/.s  .~  ) )
qusrng.v  |-  ( ph  ->  V  =  ( Base `  R ) )
qusrng.p  |-  .+  =  ( +g  `  R )
qusrng.t  |-  .x.  =  ( .r `  R )
qusrng.r  |-  ( ph  ->  .~  Er  V )
qusrng.e1  |-  ( ph  ->  ( ( a  .~  p  /\  b  .~  q
)  ->  ( a  .+  b )  .~  (
p  .+  q )
) )
qusrng.e2  |-  ( ph  ->  ( ( a  .~  p  /\  b  .~  q
)  ->  ( a  .x.  b )  .~  (
p  .x.  q )
) )
qusrng.x  |-  ( ph  ->  R  e. Rng )
Assertion
Ref Expression
qusrng  |-  ( ph  ->  U  e. Rng )
Distinct variable groups:    R, a, b, p, q    U, a, b, p, q    V, a, b, p, q    .~ , a, b, p, q    .+ , p, q    .x. , p, q    ph, a,
b, p, q
Allowed substitution hints:    .+ ( a, b)    .x. ( a, b)

Proof of Theorem qusrng
Dummy variables  u  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qusrng.u . . 3  |-  ( ph  ->  U  =  ( R 
/.s  .~  ) )
2 qusrng.v . . 3  |-  ( ph  ->  V  =  ( Base `  R ) )
3 eqid 2196 . . 3  |-  ( u  e.  V  |->  [ u ]  .~  )  =  ( u  e.  V  |->  [ u ]  .~  )
4 qusrng.r . . . 4  |-  ( ph  ->  .~  Er  V )
5 basfn 12736 . . . . . 6  |-  Base  Fn  _V
6 qusrng.x . . . . . . 7  |-  ( ph  ->  R  e. Rng )
76elexd 2776 . . . . . 6  |-  ( ph  ->  R  e.  _V )
8 funfvex 5575 . . . . . . 7  |-  ( ( Fun  Base  /\  R  e. 
dom  Base )  ->  ( Base `  R )  e. 
_V )
98funfni 5358 . . . . . 6  |-  ( (
Base  Fn  _V  /\  R  e.  _V )  ->  ( Base `  R )  e. 
_V )
105, 7, 9sylancr 414 . . . . 5  |-  ( ph  ->  ( Base `  R
)  e.  _V )
112, 10eqeltrd 2273 . . . 4  |-  ( ph  ->  V  e.  _V )
12 erex 6616 . . . 4  |-  (  .~  Er  V  ->  ( V  e.  _V  ->  .~  e.  _V ) )
134, 11, 12sylc 62 . . 3  |-  ( ph  ->  .~  e.  _V )
141, 2, 3, 13, 6qusval 12966 . 2  |-  ( ph  ->  U  =  ( ( u  e.  V  |->  [ u ]  .~  )  "s  R ) )
15 qusrng.p . 2  |-  .+  =  ( +g  `  R )
16 qusrng.t . 2  |-  .x.  =  ( .r `  R )
171, 2, 3, 13, 6quslem 12967 . 2  |-  ( ph  ->  ( u  e.  V  |->  [ u ]  .~  ) : V -onto-> ( V /.  .~  ) )
186adantr 276 . . . . 5  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V ) )  ->  R  e. Rng )
19 simprl 529 . . . . . 6  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V ) )  ->  x  e.  V )
202eleq2d 2266 . . . . . . 7  |-  ( ph  ->  ( x  e.  V  <->  x  e.  ( Base `  R
) ) )
2120adantr 276 . . . . . 6  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V ) )  -> 
( x  e.  V  <->  x  e.  ( Base `  R
) ) )
2219, 21mpbid 147 . . . . 5  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V ) )  ->  x  e.  ( Base `  R ) )
23 simprr 531 . . . . . 6  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V ) )  -> 
y  e.  V )
242eleq2d 2266 . . . . . . 7  |-  ( ph  ->  ( y  e.  V  <->  y  e.  ( Base `  R
) ) )
2524adantr 276 . . . . . 6  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V ) )  -> 
( y  e.  V  <->  y  e.  ( Base `  R
) ) )
2623, 25mpbid 147 . . . . 5  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V ) )  -> 
y  e.  ( Base `  R ) )
27 eqid 2196 . . . . . 6  |-  ( Base `  R )  =  (
Base `  R )
2827, 15rngacl 13498 . . . . 5  |-  ( ( R  e. Rng  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  ->  ( x  .+  y )  e.  (
Base `  R )
)
2918, 22, 26, 28syl3anc 1249 . . . 4  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V ) )  -> 
( x  .+  y
)  e.  ( Base `  R ) )
302eleq2d 2266 . . . . 5  |-  ( ph  ->  ( ( x  .+  y )  e.  V  <->  ( x  .+  y )  e.  ( Base `  R
) ) )
3130adantr 276 . . . 4  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V ) )  -> 
( ( x  .+  y )  e.  V  <->  ( x  .+  y )  e.  ( Base `  R
) ) )
3229, 31mpbird 167 . . 3  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V ) )  -> 
( x  .+  y
)  e.  V )
33 qusrng.e1 . . 3  |-  ( ph  ->  ( ( a  .~  p  /\  b  .~  q
)  ->  ( a  .+  b )  .~  (
p  .+  q )
) )
344, 11, 3, 32, 33ercpbl 12974 . 2  |-  ( (
ph  /\  ( a  e.  V  /\  b  e.  V )  /\  (
p  e.  V  /\  q  e.  V )
)  ->  ( (
( ( u  e.  V  |->  [ u ]  .~  ) `  a )  =  ( ( u  e.  V  |->  [ u ]  .~  ) `  p
)  /\  ( (
u  e.  V  |->  [ u ]  .~  ) `  b )  =  ( ( u  e.  V  |->  [ u ]  .~  ) `  q )
)  ->  ( (
u  e.  V  |->  [ u ]  .~  ) `  ( a  .+  b
) )  =  ( ( u  e.  V  |->  [ u ]  .~  ) `  ( p  .+  q ) ) ) )
3527, 16rngcl 13500 . . . . 5  |-  ( ( R  e. Rng  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  ->  ( x  .x.  y )  e.  (
Base `  R )
)
3618, 22, 26, 35syl3anc 1249 . . . 4  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V ) )  -> 
( x  .x.  y
)  e.  ( Base `  R ) )
372eleq2d 2266 . . . . 5  |-  ( ph  ->  ( ( x  .x.  y )  e.  V  <->  ( x  .x.  y )  e.  ( Base `  R
) ) )
3837adantr 276 . . . 4  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V ) )  -> 
( ( x  .x.  y )  e.  V  <->  ( x  .x.  y )  e.  ( Base `  R
) ) )
3936, 38mpbird 167 . . 3  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V ) )  -> 
( x  .x.  y
)  e.  V )
40 qusrng.e2 . . 3  |-  ( ph  ->  ( ( a  .~  p  /\  b  .~  q
)  ->  ( a  .x.  b )  .~  (
p  .x.  q )
) )
414, 11, 3, 39, 40ercpbl 12974 . 2  |-  ( (
ph  /\  ( a  e.  V  /\  b  e.  V )  /\  (
p  e.  V  /\  q  e.  V )
)  ->  ( (
( ( u  e.  V  |->  [ u ]  .~  ) `  a )  =  ( ( u  e.  V  |->  [ u ]  .~  ) `  p
)  /\  ( (
u  e.  V  |->  [ u ]  .~  ) `  b )  =  ( ( u  e.  V  |->  [ u ]  .~  ) `  q )
)  ->  ( (
u  e.  V  |->  [ u ]  .~  ) `  ( a  .x.  b
) )  =  ( ( u  e.  V  |->  [ u ]  .~  ) `  ( p  .x.  q ) ) ) )
4214, 2, 15, 16, 17, 34, 41, 6imasrng 13512 1  |-  ( ph  ->  U  e. Rng )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   _Vcvv 2763   class class class wbr 4033    |-> cmpt 4094    Fn wfn 5253   ` cfv 5258  (class class class)co 5922    Er wer 6589   [cec 6590   /.cqs 6591   Basecbs 12678   +g cplusg 12755   .rcmulr 12756    /.s cqus 12943  Rngcrng 13488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-pre-ltirr 7991  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-tp 3630  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-er 6592  df-ec 6594  df-qs 6598  df-pnf 8063  df-mnf 8064  df-ltxr 8066  df-inn 8991  df-2 9049  df-3 9050  df-ndx 12681  df-slot 12682  df-base 12684  df-sets 12685  df-plusg 12768  df-mulr 12769  df-0g 12929  df-iimas 12945  df-qus 12946  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-grp 13135  df-minusg 13136  df-cmn 13416  df-abl 13417  df-mgp 13477  df-rng 13489
This theorem is referenced by:  qus2idrng  14081
  Copyright terms: Public domain W3C validator