ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qusrng Unicode version

Theorem qusrng 13795
Description: The quotient structure of a non-unital ring is a non-unital ring (qusring2 13903 analog). (Contributed by AV, 23-Feb-2025.)
Hypotheses
Ref Expression
qusrng.u  |-  ( ph  ->  U  =  ( R 
/.s  .~  ) )
qusrng.v  |-  ( ph  ->  V  =  ( Base `  R ) )
qusrng.p  |-  .+  =  ( +g  `  R )
qusrng.t  |-  .x.  =  ( .r `  R )
qusrng.r  |-  ( ph  ->  .~  Er  V )
qusrng.e1  |-  ( ph  ->  ( ( a  .~  p  /\  b  .~  q
)  ->  ( a  .+  b )  .~  (
p  .+  q )
) )
qusrng.e2  |-  ( ph  ->  ( ( a  .~  p  /\  b  .~  q
)  ->  ( a  .x.  b )  .~  (
p  .x.  q )
) )
qusrng.x  |-  ( ph  ->  R  e. Rng )
Assertion
Ref Expression
qusrng  |-  ( ph  ->  U  e. Rng )
Distinct variable groups:    R, a, b, p, q    U, a, b, p, q    V, a, b, p, q    .~ , a, b, p, q    .+ , p, q    .x. , p, q    ph, a,
b, p, q
Allowed substitution hints:    .+ ( a, b)    .x. ( a, b)

Proof of Theorem qusrng
Dummy variables  u  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qusrng.u . . 3  |-  ( ph  ->  U  =  ( R 
/.s  .~  ) )
2 qusrng.v . . 3  |-  ( ph  ->  V  =  ( Base `  R ) )
3 eqid 2206 . . 3  |-  ( u  e.  V  |->  [ u ]  .~  )  =  ( u  e.  V  |->  [ u ]  .~  )
4 qusrng.r . . . 4  |-  ( ph  ->  .~  Er  V )
5 basfn 12965 . . . . . 6  |-  Base  Fn  _V
6 qusrng.x . . . . . . 7  |-  ( ph  ->  R  e. Rng )
76elexd 2787 . . . . . 6  |-  ( ph  ->  R  e.  _V )
8 funfvex 5606 . . . . . . 7  |-  ( ( Fun  Base  /\  R  e. 
dom  Base )  ->  ( Base `  R )  e. 
_V )
98funfni 5385 . . . . . 6  |-  ( (
Base  Fn  _V  /\  R  e.  _V )  ->  ( Base `  R )  e. 
_V )
105, 7, 9sylancr 414 . . . . 5  |-  ( ph  ->  ( Base `  R
)  e.  _V )
112, 10eqeltrd 2283 . . . 4  |-  ( ph  ->  V  e.  _V )
12 erex 6657 . . . 4  |-  (  .~  Er  V  ->  ( V  e.  _V  ->  .~  e.  _V ) )
134, 11, 12sylc 62 . . 3  |-  ( ph  ->  .~  e.  _V )
141, 2, 3, 13, 6qusval 13230 . 2  |-  ( ph  ->  U  =  ( ( u  e.  V  |->  [ u ]  .~  )  "s  R ) )
15 qusrng.p . 2  |-  .+  =  ( +g  `  R )
16 qusrng.t . 2  |-  .x.  =  ( .r `  R )
171, 2, 3, 13, 6quslem 13231 . 2  |-  ( ph  ->  ( u  e.  V  |->  [ u ]  .~  ) : V -onto-> ( V /.  .~  ) )
186adantr 276 . . . . 5  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V ) )  ->  R  e. Rng )
19 simprl 529 . . . . . 6  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V ) )  ->  x  e.  V )
202eleq2d 2276 . . . . . . 7  |-  ( ph  ->  ( x  e.  V  <->  x  e.  ( Base `  R
) ) )
2120adantr 276 . . . . . 6  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V ) )  -> 
( x  e.  V  <->  x  e.  ( Base `  R
) ) )
2219, 21mpbid 147 . . . . 5  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V ) )  ->  x  e.  ( Base `  R ) )
23 simprr 531 . . . . . 6  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V ) )  -> 
y  e.  V )
242eleq2d 2276 . . . . . . 7  |-  ( ph  ->  ( y  e.  V  <->  y  e.  ( Base `  R
) ) )
2524adantr 276 . . . . . 6  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V ) )  -> 
( y  e.  V  <->  y  e.  ( Base `  R
) ) )
2623, 25mpbid 147 . . . . 5  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V ) )  -> 
y  e.  ( Base `  R ) )
27 eqid 2206 . . . . . 6  |-  ( Base `  R )  =  (
Base `  R )
2827, 15rngacl 13779 . . . . 5  |-  ( ( R  e. Rng  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  ->  ( x  .+  y )  e.  (
Base `  R )
)
2918, 22, 26, 28syl3anc 1250 . . . 4  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V ) )  -> 
( x  .+  y
)  e.  ( Base `  R ) )
302eleq2d 2276 . . . . 5  |-  ( ph  ->  ( ( x  .+  y )  e.  V  <->  ( x  .+  y )  e.  ( Base `  R
) ) )
3130adantr 276 . . . 4  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V ) )  -> 
( ( x  .+  y )  e.  V  <->  ( x  .+  y )  e.  ( Base `  R
) ) )
3229, 31mpbird 167 . . 3  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V ) )  -> 
( x  .+  y
)  e.  V )
33 qusrng.e1 . . 3  |-  ( ph  ->  ( ( a  .~  p  /\  b  .~  q
)  ->  ( a  .+  b )  .~  (
p  .+  q )
) )
344, 11, 3, 32, 33ercpbl 13238 . 2  |-  ( (
ph  /\  ( a  e.  V  /\  b  e.  V )  /\  (
p  e.  V  /\  q  e.  V )
)  ->  ( (
( ( u  e.  V  |->  [ u ]  .~  ) `  a )  =  ( ( u  e.  V  |->  [ u ]  .~  ) `  p
)  /\  ( (
u  e.  V  |->  [ u ]  .~  ) `  b )  =  ( ( u  e.  V  |->  [ u ]  .~  ) `  q )
)  ->  ( (
u  e.  V  |->  [ u ]  .~  ) `  ( a  .+  b
) )  =  ( ( u  e.  V  |->  [ u ]  .~  ) `  ( p  .+  q ) ) ) )
3527, 16rngcl 13781 . . . . 5  |-  ( ( R  e. Rng  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  ->  ( x  .x.  y )  e.  (
Base `  R )
)
3618, 22, 26, 35syl3anc 1250 . . . 4  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V ) )  -> 
( x  .x.  y
)  e.  ( Base `  R ) )
372eleq2d 2276 . . . . 5  |-  ( ph  ->  ( ( x  .x.  y )  e.  V  <->  ( x  .x.  y )  e.  ( Base `  R
) ) )
3837adantr 276 . . . 4  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V ) )  -> 
( ( x  .x.  y )  e.  V  <->  ( x  .x.  y )  e.  ( Base `  R
) ) )
3936, 38mpbird 167 . . 3  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V ) )  -> 
( x  .x.  y
)  e.  V )
40 qusrng.e2 . . 3  |-  ( ph  ->  ( ( a  .~  p  /\  b  .~  q
)  ->  ( a  .x.  b )  .~  (
p  .x.  q )
) )
414, 11, 3, 39, 40ercpbl 13238 . 2  |-  ( (
ph  /\  ( a  e.  V  /\  b  e.  V )  /\  (
p  e.  V  /\  q  e.  V )
)  ->  ( (
( ( u  e.  V  |->  [ u ]  .~  ) `  a )  =  ( ( u  e.  V  |->  [ u ]  .~  ) `  p
)  /\  ( (
u  e.  V  |->  [ u ]  .~  ) `  b )  =  ( ( u  e.  V  |->  [ u ]  .~  ) `  q )
)  ->  ( (
u  e.  V  |->  [ u ]  .~  ) `  ( a  .x.  b
) )  =  ( ( u  e.  V  |->  [ u ]  .~  ) `  ( p  .x.  q ) ) ) )
4214, 2, 15, 16, 17, 34, 41, 6imasrng 13793 1  |-  ( ph  ->  U  e. Rng )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2177   _Vcvv 2773   class class class wbr 4051    |-> cmpt 4113    Fn wfn 5275   ` cfv 5280  (class class class)co 5957    Er wer 6630   [cec 6631   /.cqs 6632   Basecbs 12907   +g cplusg 12984   .rcmulr 12985    /.s cqus 13207  Rngcrng 13769
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-addcom 8045  ax-addass 8047  ax-i2m1 8050  ax-0lt1 8051  ax-0id 8053  ax-rnegex 8054  ax-pre-ltirr 8057  ax-pre-lttrn 8059  ax-pre-ltadd 8061
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-tp 3646  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-er 6633  df-ec 6635  df-qs 6639  df-pnf 8129  df-mnf 8130  df-ltxr 8132  df-inn 9057  df-2 9115  df-3 9116  df-ndx 12910  df-slot 12911  df-base 12913  df-sets 12914  df-plusg 12997  df-mulr 12998  df-0g 13165  df-iimas 13209  df-qus 13210  df-mgm 13263  df-sgrp 13309  df-mnd 13324  df-grp 13410  df-minusg 13411  df-cmn 13697  df-abl 13698  df-mgp 13758  df-rng 13770
This theorem is referenced by:  qus2idrng  14362
  Copyright terms: Public domain W3C validator