ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qusrng Unicode version

Theorem qusrng 13916
Description: The quotient structure of a non-unital ring is a non-unital ring (qusring2 14024 analog). (Contributed by AV, 23-Feb-2025.)
Hypotheses
Ref Expression
qusrng.u  |-  ( ph  ->  U  =  ( R 
/.s  .~  ) )
qusrng.v  |-  ( ph  ->  V  =  ( Base `  R ) )
qusrng.p  |-  .+  =  ( +g  `  R )
qusrng.t  |-  .x.  =  ( .r `  R )
qusrng.r  |-  ( ph  ->  .~  Er  V )
qusrng.e1  |-  ( ph  ->  ( ( a  .~  p  /\  b  .~  q
)  ->  ( a  .+  b )  .~  (
p  .+  q )
) )
qusrng.e2  |-  ( ph  ->  ( ( a  .~  p  /\  b  .~  q
)  ->  ( a  .x.  b )  .~  (
p  .x.  q )
) )
qusrng.x  |-  ( ph  ->  R  e. Rng )
Assertion
Ref Expression
qusrng  |-  ( ph  ->  U  e. Rng )
Distinct variable groups:    R, a, b, p, q    U, a, b, p, q    V, a, b, p, q    .~ , a, b, p, q    .+ , p, q    .x. , p, q    ph, a,
b, p, q
Allowed substitution hints:    .+ ( a, b)    .x. ( a, b)

Proof of Theorem qusrng
Dummy variables  u  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qusrng.u . . 3  |-  ( ph  ->  U  =  ( R 
/.s  .~  ) )
2 qusrng.v . . 3  |-  ( ph  ->  V  =  ( Base `  R ) )
3 eqid 2229 . . 3  |-  ( u  e.  V  |->  [ u ]  .~  )  =  ( u  e.  V  |->  [ u ]  .~  )
4 qusrng.r . . . 4  |-  ( ph  ->  .~  Er  V )
5 basfn 13086 . . . . . 6  |-  Base  Fn  _V
6 qusrng.x . . . . . . 7  |-  ( ph  ->  R  e. Rng )
76elexd 2813 . . . . . 6  |-  ( ph  ->  R  e.  _V )
8 funfvex 5643 . . . . . . 7  |-  ( ( Fun  Base  /\  R  e. 
dom  Base )  ->  ( Base `  R )  e. 
_V )
98funfni 5422 . . . . . 6  |-  ( (
Base  Fn  _V  /\  R  e.  _V )  ->  ( Base `  R )  e. 
_V )
105, 7, 9sylancr 414 . . . . 5  |-  ( ph  ->  ( Base `  R
)  e.  _V )
112, 10eqeltrd 2306 . . . 4  |-  ( ph  ->  V  e.  _V )
12 erex 6702 . . . 4  |-  (  .~  Er  V  ->  ( V  e.  _V  ->  .~  e.  _V ) )
134, 11, 12sylc 62 . . 3  |-  ( ph  ->  .~  e.  _V )
141, 2, 3, 13, 6qusval 13351 . 2  |-  ( ph  ->  U  =  ( ( u  e.  V  |->  [ u ]  .~  )  "s  R ) )
15 qusrng.p . 2  |-  .+  =  ( +g  `  R )
16 qusrng.t . 2  |-  .x.  =  ( .r `  R )
171, 2, 3, 13, 6quslem 13352 . 2  |-  ( ph  ->  ( u  e.  V  |->  [ u ]  .~  ) : V -onto-> ( V /.  .~  ) )
186adantr 276 . . . . 5  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V ) )  ->  R  e. Rng )
19 simprl 529 . . . . . 6  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V ) )  ->  x  e.  V )
202eleq2d 2299 . . . . . . 7  |-  ( ph  ->  ( x  e.  V  <->  x  e.  ( Base `  R
) ) )
2120adantr 276 . . . . . 6  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V ) )  -> 
( x  e.  V  <->  x  e.  ( Base `  R
) ) )
2219, 21mpbid 147 . . . . 5  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V ) )  ->  x  e.  ( Base `  R ) )
23 simprr 531 . . . . . 6  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V ) )  -> 
y  e.  V )
242eleq2d 2299 . . . . . . 7  |-  ( ph  ->  ( y  e.  V  <->  y  e.  ( Base `  R
) ) )
2524adantr 276 . . . . . 6  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V ) )  -> 
( y  e.  V  <->  y  e.  ( Base `  R
) ) )
2623, 25mpbid 147 . . . . 5  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V ) )  -> 
y  e.  ( Base `  R ) )
27 eqid 2229 . . . . . 6  |-  ( Base `  R )  =  (
Base `  R )
2827, 15rngacl 13900 . . . . 5  |-  ( ( R  e. Rng  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  ->  ( x  .+  y )  e.  (
Base `  R )
)
2918, 22, 26, 28syl3anc 1271 . . . 4  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V ) )  -> 
( x  .+  y
)  e.  ( Base `  R ) )
302eleq2d 2299 . . . . 5  |-  ( ph  ->  ( ( x  .+  y )  e.  V  <->  ( x  .+  y )  e.  ( Base `  R
) ) )
3130adantr 276 . . . 4  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V ) )  -> 
( ( x  .+  y )  e.  V  <->  ( x  .+  y )  e.  ( Base `  R
) ) )
3229, 31mpbird 167 . . 3  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V ) )  -> 
( x  .+  y
)  e.  V )
33 qusrng.e1 . . 3  |-  ( ph  ->  ( ( a  .~  p  /\  b  .~  q
)  ->  ( a  .+  b )  .~  (
p  .+  q )
) )
344, 11, 3, 32, 33ercpbl 13359 . 2  |-  ( (
ph  /\  ( a  e.  V  /\  b  e.  V )  /\  (
p  e.  V  /\  q  e.  V )
)  ->  ( (
( ( u  e.  V  |->  [ u ]  .~  ) `  a )  =  ( ( u  e.  V  |->  [ u ]  .~  ) `  p
)  /\  ( (
u  e.  V  |->  [ u ]  .~  ) `  b )  =  ( ( u  e.  V  |->  [ u ]  .~  ) `  q )
)  ->  ( (
u  e.  V  |->  [ u ]  .~  ) `  ( a  .+  b
) )  =  ( ( u  e.  V  |->  [ u ]  .~  ) `  ( p  .+  q ) ) ) )
3527, 16rngcl 13902 . . . . 5  |-  ( ( R  e. Rng  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  ->  ( x  .x.  y )  e.  (
Base `  R )
)
3618, 22, 26, 35syl3anc 1271 . . . 4  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V ) )  -> 
( x  .x.  y
)  e.  ( Base `  R ) )
372eleq2d 2299 . . . . 5  |-  ( ph  ->  ( ( x  .x.  y )  e.  V  <->  ( x  .x.  y )  e.  ( Base `  R
) ) )
3837adantr 276 . . . 4  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V ) )  -> 
( ( x  .x.  y )  e.  V  <->  ( x  .x.  y )  e.  ( Base `  R
) ) )
3936, 38mpbird 167 . . 3  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V ) )  -> 
( x  .x.  y
)  e.  V )
40 qusrng.e2 . . 3  |-  ( ph  ->  ( ( a  .~  p  /\  b  .~  q
)  ->  ( a  .x.  b )  .~  (
p  .x.  q )
) )
414, 11, 3, 39, 40ercpbl 13359 . 2  |-  ( (
ph  /\  ( a  e.  V  /\  b  e.  V )  /\  (
p  e.  V  /\  q  e.  V )
)  ->  ( (
( ( u  e.  V  |->  [ u ]  .~  ) `  a )  =  ( ( u  e.  V  |->  [ u ]  .~  ) `  p
)  /\  ( (
u  e.  V  |->  [ u ]  .~  ) `  b )  =  ( ( u  e.  V  |->  [ u ]  .~  ) `  q )
)  ->  ( (
u  e.  V  |->  [ u ]  .~  ) `  ( a  .x.  b
) )  =  ( ( u  e.  V  |->  [ u ]  .~  ) `  ( p  .x.  q ) ) ) )
4214, 2, 15, 16, 17, 34, 41, 6imasrng 13914 1  |-  ( ph  ->  U  e. Rng )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   _Vcvv 2799   class class class wbr 4082    |-> cmpt 4144    Fn wfn 5312   ` cfv 5317  (class class class)co 6000    Er wer 6675   [cec 6676   /.cqs 6677   Basecbs 13027   +g cplusg 13105   .rcmulr 13106    /.s cqus 13328  Rngcrng 13890
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-pre-ltirr 8107  ax-pre-lttrn 8109  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-tp 3674  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-er 6678  df-ec 6680  df-qs 6684  df-pnf 8179  df-mnf 8180  df-ltxr 8182  df-inn 9107  df-2 9165  df-3 9166  df-ndx 13030  df-slot 13031  df-base 13033  df-sets 13034  df-plusg 13118  df-mulr 13119  df-0g 13286  df-iimas 13330  df-qus 13331  df-mgm 13384  df-sgrp 13430  df-mnd 13445  df-grp 13531  df-minusg 13532  df-cmn 13818  df-abl 13819  df-mgp 13879  df-rng 13891
This theorem is referenced by:  qus2idrng  14483
  Copyright terms: Public domain W3C validator