| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > qusrng | Unicode version | ||
| Description: The quotient structure of a non-unital ring is a non-unital ring (qusring2 13746 analog). (Contributed by AV, 23-Feb-2025.) |
| Ref | Expression |
|---|---|
| qusrng.u |
|
| qusrng.v |
|
| qusrng.p |
|
| qusrng.t |
|
| qusrng.r |
|
| qusrng.e1 |
|
| qusrng.e2 |
|
| qusrng.x |
|
| Ref | Expression |
|---|---|
| qusrng |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qusrng.u |
. . 3
| |
| 2 | qusrng.v |
. . 3
| |
| 3 | eqid 2204 |
. . 3
| |
| 4 | qusrng.r |
. . . 4
| |
| 5 | basfn 12809 |
. . . . . 6
| |
| 6 | qusrng.x |
. . . . . . 7
| |
| 7 | 6 | elexd 2784 |
. . . . . 6
|
| 8 | funfvex 5587 |
. . . . . . 7
| |
| 9 | 8 | funfni 5370 |
. . . . . 6
|
| 10 | 5, 7, 9 | sylancr 414 |
. . . . 5
|
| 11 | 2, 10 | eqeltrd 2281 |
. . . 4
|
| 12 | erex 6634 |
. . . 4
| |
| 13 | 4, 11, 12 | sylc 62 |
. . 3
|
| 14 | 1, 2, 3, 13, 6 | qusval 13073 |
. 2
|
| 15 | qusrng.p |
. 2
| |
| 16 | qusrng.t |
. 2
| |
| 17 | 1, 2, 3, 13, 6 | quslem 13074 |
. 2
|
| 18 | 6 | adantr 276 |
. . . . 5
|
| 19 | simprl 529 |
. . . . . 6
| |
| 20 | 2 | eleq2d 2274 |
. . . . . . 7
|
| 21 | 20 | adantr 276 |
. . . . . 6
|
| 22 | 19, 21 | mpbid 147 |
. . . . 5
|
| 23 | simprr 531 |
. . . . . 6
| |
| 24 | 2 | eleq2d 2274 |
. . . . . . 7
|
| 25 | 24 | adantr 276 |
. . . . . 6
|
| 26 | 23, 25 | mpbid 147 |
. . . . 5
|
| 27 | eqid 2204 |
. . . . . 6
| |
| 28 | 27, 15 | rngacl 13622 |
. . . . 5
|
| 29 | 18, 22, 26, 28 | syl3anc 1249 |
. . . 4
|
| 30 | 2 | eleq2d 2274 |
. . . . 5
|
| 31 | 30 | adantr 276 |
. . . 4
|
| 32 | 29, 31 | mpbird 167 |
. . 3
|
| 33 | qusrng.e1 |
. . 3
| |
| 34 | 4, 11, 3, 32, 33 | ercpbl 13081 |
. 2
|
| 35 | 27, 16 | rngcl 13624 |
. . . . 5
|
| 36 | 18, 22, 26, 35 | syl3anc 1249 |
. . . 4
|
| 37 | 2 | eleq2d 2274 |
. . . . 5
|
| 38 | 37 | adantr 276 |
. . . 4
|
| 39 | 36, 38 | mpbird 167 |
. . 3
|
| 40 | qusrng.e2 |
. . 3
| |
| 41 | 4, 11, 3, 39, 40 | ercpbl 13081 |
. 2
|
| 42 | 14, 2, 15, 16, 17, 34, 41, 6 | imasrng 13636 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-setind 4583 ax-cnex 7998 ax-resscn 7999 ax-1cn 8000 ax-1re 8001 ax-icn 8002 ax-addcl 8003 ax-addrcl 8004 ax-mulcl 8005 ax-addcom 8007 ax-addass 8009 ax-i2m1 8012 ax-0lt1 8013 ax-0id 8015 ax-rnegex 8016 ax-pre-ltirr 8019 ax-pre-lttrn 8021 ax-pre-ltadd 8023 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-tp 3640 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4338 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-res 4685 df-ima 4686 df-iota 5229 df-fun 5270 df-fn 5271 df-f 5272 df-f1 5273 df-fo 5274 df-f1o 5275 df-fv 5276 df-riota 5889 df-ov 5937 df-oprab 5938 df-mpo 5939 df-er 6610 df-ec 6612 df-qs 6616 df-pnf 8091 df-mnf 8092 df-ltxr 8094 df-inn 9019 df-2 9077 df-3 9078 df-ndx 12754 df-slot 12755 df-base 12757 df-sets 12758 df-plusg 12841 df-mulr 12842 df-0g 13008 df-iimas 13052 df-qus 13053 df-mgm 13106 df-sgrp 13152 df-mnd 13167 df-grp 13253 df-minusg 13254 df-cmn 13540 df-abl 13541 df-mgp 13601 df-rng 13613 |
| This theorem is referenced by: qus2idrng 14205 |
| Copyright terms: Public domain | W3C validator |