ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rdgruledefgg GIF version

Theorem rdgruledefgg 6240
Description: The recursion rule for the recursive definition generator is defined everywhere. (Contributed by Jim Kingdon, 4-Jul-2019.)
Assertion
Ref Expression
rdgruledefgg ((𝐹 Fn V ∧ 𝐴𝑉) → (Fun (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))) ∧ ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘𝑓) ∈ V))
Distinct variable groups:   𝐴,𝑔   𝑥,𝑔,𝐹
Allowed substitution hints:   𝐴(𝑥,𝑓)   𝐹(𝑓)   𝑉(𝑥,𝑓,𝑔)

Proof of Theorem rdgruledefgg
StepHypRef Expression
1 elex 2671 . 2 (𝐴𝑉𝐴 ∈ V)
2 funmpt 5131 . . . 4 Fun (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))
3 vex 2663 . . . . 5 𝑓 ∈ V
4 vex 2663 . . . . . . . . . . . . 13 𝑔 ∈ V
5 vex 2663 . . . . . . . . . . . . 13 𝑥 ∈ V
64, 5fvex 5409 . . . . . . . . . . . 12 (𝑔𝑥) ∈ V
7 funfvex 5406 . . . . . . . . . . . . 13 ((Fun 𝐹 ∧ (𝑔𝑥) ∈ dom 𝐹) → (𝐹‘(𝑔𝑥)) ∈ V)
87funfni 5193 . . . . . . . . . . . 12 ((𝐹 Fn V ∧ (𝑔𝑥) ∈ V) → (𝐹‘(𝑔𝑥)) ∈ V)
96, 8mpan2 421 . . . . . . . . . . 11 (𝐹 Fn V → (𝐹‘(𝑔𝑥)) ∈ V)
109ralrimivw 2483 . . . . . . . . . 10 (𝐹 Fn V → ∀𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)) ∈ V)
114dmex 4775 . . . . . . . . . . 11 dom 𝑔 ∈ V
12 iunexg 5985 . . . . . . . . . . 11 ((dom 𝑔 ∈ V ∧ ∀𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)) ∈ V) → 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)) ∈ V)
1311, 12mpan 420 . . . . . . . . . 10 (∀𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)) ∈ V → 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)) ∈ V)
1410, 13syl 14 . . . . . . . . 9 (𝐹 Fn V → 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)) ∈ V)
15 unexg 4334 . . . . . . . . 9 ((𝐴 ∈ V ∧ 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)) ∈ V) → (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))) ∈ V)
1614, 15sylan2 284 . . . . . . . 8 ((𝐴 ∈ V ∧ 𝐹 Fn V) → (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))) ∈ V)
1716ancoms 266 . . . . . . 7 ((𝐹 Fn V ∧ 𝐴 ∈ V) → (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))) ∈ V)
1817ralrimivw 2483 . . . . . 6 ((𝐹 Fn V ∧ 𝐴 ∈ V) → ∀𝑔 ∈ V (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))) ∈ V)
19 dmmptg 5006 . . . . . 6 (∀𝑔 ∈ V (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))) ∈ V → dom (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))) = V)
2018, 19syl 14 . . . . 5 ((𝐹 Fn V ∧ 𝐴 ∈ V) → dom (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))) = V)
213, 20eleqtrrid 2207 . . . 4 ((𝐹 Fn V ∧ 𝐴 ∈ V) → 𝑓 ∈ dom (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))))
22 funfvex 5406 . . . 4 ((Fun (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))) ∧ 𝑓 ∈ dom (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))) → ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘𝑓) ∈ V)
232, 21, 22sylancr 410 . . 3 ((𝐹 Fn V ∧ 𝐴 ∈ V) → ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘𝑓) ∈ V)
2423, 2jctil 310 . 2 ((𝐹 Fn V ∧ 𝐴 ∈ V) → (Fun (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))) ∧ ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘𝑓) ∈ V))
251, 24sylan2 284 1 ((𝐹 Fn V ∧ 𝐴𝑉) → (Fun (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))) ∧ ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘𝑓) ∈ V))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1316  wcel 1465  wral 2393  Vcvv 2660  cun 3039   ciun 3783  cmpt 3959  dom cdm 4509  Fun wfun 5087   Fn wfn 5088  cfv 5093
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-coll 4013  ax-sep 4016  ax-pow 4068  ax-pr 4101  ax-un 4325
This theorem depends on definitions:  df-bi 116  df-3an 949  df-tru 1319  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ral 2398  df-rex 2399  df-reu 2400  df-rab 2402  df-v 2662  df-sbc 2883  df-csb 2976  df-un 3045  df-in 3047  df-ss 3054  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-iun 3785  df-br 3900  df-opab 3960  df-mpt 3961  df-id 4185  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-res 4521  df-ima 4522  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-f1 5098  df-fo 5099  df-f1o 5100  df-fv 5101
This theorem is referenced by:  rdgruledefg  6241  rdgexggg  6242  rdgifnon  6244  rdgivallem  6246
  Copyright terms: Public domain W3C validator