ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rdgruledefgg GIF version

Theorem rdgruledefgg 6373
Description: The recursion rule for the recursive definition generator is defined everywhere. (Contributed by Jim Kingdon, 4-Jul-2019.)
Assertion
Ref Expression
rdgruledefgg ((𝐹 Fn V ∧ 𝐴𝑉) → (Fun (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))) ∧ ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘𝑓) ∈ V))
Distinct variable groups:   𝐴,𝑔   𝑥,𝑔,𝐹
Allowed substitution hints:   𝐴(𝑥,𝑓)   𝐹(𝑓)   𝑉(𝑥,𝑓,𝑔)

Proof of Theorem rdgruledefgg
StepHypRef Expression
1 elex 2748 . 2 (𝐴𝑉𝐴 ∈ V)
2 funmpt 5253 . . . 4 Fun (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))
3 vex 2740 . . . . 5 𝑓 ∈ V
4 vex 2740 . . . . . . . . . . . . 13 𝑔 ∈ V
5 vex 2740 . . . . . . . . . . . . 13 𝑥 ∈ V
64, 5fvex 5534 . . . . . . . . . . . 12 (𝑔𝑥) ∈ V
7 funfvex 5531 . . . . . . . . . . . . 13 ((Fun 𝐹 ∧ (𝑔𝑥) ∈ dom 𝐹) → (𝐹‘(𝑔𝑥)) ∈ V)
87funfni 5315 . . . . . . . . . . . 12 ((𝐹 Fn V ∧ (𝑔𝑥) ∈ V) → (𝐹‘(𝑔𝑥)) ∈ V)
96, 8mpan2 425 . . . . . . . . . . 11 (𝐹 Fn V → (𝐹‘(𝑔𝑥)) ∈ V)
109ralrimivw 2551 . . . . . . . . . 10 (𝐹 Fn V → ∀𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)) ∈ V)
114dmex 4892 . . . . . . . . . . 11 dom 𝑔 ∈ V
12 iunexg 6117 . . . . . . . . . . 11 ((dom 𝑔 ∈ V ∧ ∀𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)) ∈ V) → 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)) ∈ V)
1311, 12mpan 424 . . . . . . . . . 10 (∀𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)) ∈ V → 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)) ∈ V)
1410, 13syl 14 . . . . . . . . 9 (𝐹 Fn V → 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)) ∈ V)
15 unexg 4442 . . . . . . . . 9 ((𝐴 ∈ V ∧ 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)) ∈ V) → (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))) ∈ V)
1614, 15sylan2 286 . . . . . . . 8 ((𝐴 ∈ V ∧ 𝐹 Fn V) → (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))) ∈ V)
1716ancoms 268 . . . . . . 7 ((𝐹 Fn V ∧ 𝐴 ∈ V) → (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))) ∈ V)
1817ralrimivw 2551 . . . . . 6 ((𝐹 Fn V ∧ 𝐴 ∈ V) → ∀𝑔 ∈ V (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))) ∈ V)
19 dmmptg 5125 . . . . . 6 (∀𝑔 ∈ V (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))) ∈ V → dom (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))) = V)
2018, 19syl 14 . . . . 5 ((𝐹 Fn V ∧ 𝐴 ∈ V) → dom (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))) = V)
213, 20eleqtrrid 2267 . . . 4 ((𝐹 Fn V ∧ 𝐴 ∈ V) → 𝑓 ∈ dom (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))))
22 funfvex 5531 . . . 4 ((Fun (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))) ∧ 𝑓 ∈ dom (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))) → ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘𝑓) ∈ V)
232, 21, 22sylancr 414 . . 3 ((𝐹 Fn V ∧ 𝐴 ∈ V) → ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘𝑓) ∈ V)
2423, 2jctil 312 . 2 ((𝐹 Fn V ∧ 𝐴 ∈ V) → (Fun (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))) ∧ ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘𝑓) ∈ V))
251, 24sylan2 286 1 ((𝐹 Fn V ∧ 𝐴𝑉) → (Fun (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))) ∧ ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘𝑓) ∈ V))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2148  wral 2455  Vcvv 2737  cun 3127   ciun 3886  cmpt 4063  dom cdm 4625  Fun wfun 5209   Fn wfn 5210  cfv 5215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4117  ax-sep 4120  ax-pow 4173  ax-pr 4208  ax-un 4432
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-iun 3888  df-br 4003  df-opab 4064  df-mpt 4065  df-id 4292  df-xp 4631  df-rel 4632  df-cnv 4633  df-co 4634  df-dm 4635  df-rn 4636  df-res 4637  df-ima 4638  df-iota 5177  df-fun 5217  df-fn 5218  df-f 5219  df-f1 5220  df-fo 5221  df-f1o 5222  df-fv 5223
This theorem is referenced by:  rdgruledefg  6374  rdgexggg  6375  rdgifnon  6377  rdgivallem  6379
  Copyright terms: Public domain W3C validator