ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rdgruledefgg GIF version

Theorem rdgruledefgg 6226
Description: The recursion rule for the recursive definition generator is defined everywhere. (Contributed by Jim Kingdon, 4-Jul-2019.)
Assertion
Ref Expression
rdgruledefgg ((𝐹 Fn V ∧ 𝐴𝑉) → (Fun (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))) ∧ ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘𝑓) ∈ V))
Distinct variable groups:   𝐴,𝑔   𝑥,𝑔,𝐹
Allowed substitution hints:   𝐴(𝑥,𝑓)   𝐹(𝑓)   𝑉(𝑥,𝑓,𝑔)

Proof of Theorem rdgruledefgg
StepHypRef Expression
1 elex 2668 . 2 (𝐴𝑉𝐴 ∈ V)
2 funmpt 5119 . . . 4 Fun (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))
3 vex 2660 . . . . 5 𝑓 ∈ V
4 vex 2660 . . . . . . . . . . . . 13 𝑔 ∈ V
5 vex 2660 . . . . . . . . . . . . 13 𝑥 ∈ V
64, 5fvex 5395 . . . . . . . . . . . 12 (𝑔𝑥) ∈ V
7 funfvex 5392 . . . . . . . . . . . . 13 ((Fun 𝐹 ∧ (𝑔𝑥) ∈ dom 𝐹) → (𝐹‘(𝑔𝑥)) ∈ V)
87funfni 5181 . . . . . . . . . . . 12 ((𝐹 Fn V ∧ (𝑔𝑥) ∈ V) → (𝐹‘(𝑔𝑥)) ∈ V)
96, 8mpan2 419 . . . . . . . . . . 11 (𝐹 Fn V → (𝐹‘(𝑔𝑥)) ∈ V)
109ralrimivw 2480 . . . . . . . . . 10 (𝐹 Fn V → ∀𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)) ∈ V)
114dmex 4763 . . . . . . . . . . 11 dom 𝑔 ∈ V
12 iunexg 5971 . . . . . . . . . . 11 ((dom 𝑔 ∈ V ∧ ∀𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)) ∈ V) → 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)) ∈ V)
1311, 12mpan 418 . . . . . . . . . 10 (∀𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)) ∈ V → 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)) ∈ V)
1410, 13syl 14 . . . . . . . . 9 (𝐹 Fn V → 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)) ∈ V)
15 unexg 4324 . . . . . . . . 9 ((𝐴 ∈ V ∧ 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)) ∈ V) → (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))) ∈ V)
1614, 15sylan2 282 . . . . . . . 8 ((𝐴 ∈ V ∧ 𝐹 Fn V) → (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))) ∈ V)
1716ancoms 266 . . . . . . 7 ((𝐹 Fn V ∧ 𝐴 ∈ V) → (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))) ∈ V)
1817ralrimivw 2480 . . . . . 6 ((𝐹 Fn V ∧ 𝐴 ∈ V) → ∀𝑔 ∈ V (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))) ∈ V)
19 dmmptg 4994 . . . . . 6 (∀𝑔 ∈ V (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))) ∈ V → dom (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))) = V)
2018, 19syl 14 . . . . 5 ((𝐹 Fn V ∧ 𝐴 ∈ V) → dom (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))) = V)
213, 20syl5eleqr 2204 . . . 4 ((𝐹 Fn V ∧ 𝐴 ∈ V) → 𝑓 ∈ dom (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))))
22 funfvex 5392 . . . 4 ((Fun (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))) ∧ 𝑓 ∈ dom (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))) → ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘𝑓) ∈ V)
232, 21, 22sylancr 408 . . 3 ((𝐹 Fn V ∧ 𝐴 ∈ V) → ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘𝑓) ∈ V)
2423, 2jctil 308 . 2 ((𝐹 Fn V ∧ 𝐴 ∈ V) → (Fun (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))) ∧ ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘𝑓) ∈ V))
251, 24sylan2 282 1 ((𝐹 Fn V ∧ 𝐴𝑉) → (Fun (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))) ∧ ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘𝑓) ∈ V))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1314  wcel 1463  wral 2390  Vcvv 2657  cun 3035   ciun 3779  cmpt 3949  dom cdm 4499  Fun wfun 5075   Fn wfn 5076  cfv 5081
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4003  ax-sep 4006  ax-pow 4058  ax-pr 4091  ax-un 4315
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ral 2395  df-rex 2396  df-reu 2397  df-rab 2399  df-v 2659  df-sbc 2879  df-csb 2972  df-un 3041  df-in 3043  df-ss 3050  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-iun 3781  df-br 3896  df-opab 3950  df-mpt 3951  df-id 4175  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-rn 4510  df-res 4511  df-ima 4512  df-iota 5046  df-fun 5083  df-fn 5084  df-f 5085  df-f1 5086  df-fo 5087  df-f1o 5088  df-fv 5089
This theorem is referenced by:  rdgruledefg  6227  rdgexggg  6228  rdgifnon  6230  rdgivallem  6232
  Copyright terms: Public domain W3C validator