ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rec11apd Unicode version

Theorem rec11apd 8432
Description: Reciprocal is one-to-one. (Contributed by Jim Kingdon, 3-Mar-2020.)
Hypotheses
Ref Expression
divcld.1  |-  ( ph  ->  A  e.  CC )
divcld.2  |-  ( ph  ->  B  e.  CC )
divap0d.3  |-  ( ph  ->  A #  0 )
divap0d.4  |-  ( ph  ->  B #  0 )
rec11d.5  |-  ( ph  ->  ( 1  /  A
)  =  ( 1  /  B ) )
Assertion
Ref Expression
rec11apd  |-  ( ph  ->  A  =  B )

Proof of Theorem rec11apd
StepHypRef Expression
1 rec11d.5 . 2  |-  ( ph  ->  ( 1  /  A
)  =  ( 1  /  B ) )
2 divcld.1 . . 3  |-  ( ph  ->  A  e.  CC )
3 divap0d.3 . . 3  |-  ( ph  ->  A #  0 )
4 divcld.2 . . 3  |-  ( ph  ->  B  e.  CC )
5 divap0d.4 . . 3  |-  ( ph  ->  B #  0 )
6 rec11ap 8331 . . 3  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  ->  ( ( 1  /  A )  =  ( 1  /  B
)  <->  A  =  B
) )
72, 3, 4, 5, 6syl22anc 1185 . 2  |-  ( ph  ->  ( ( 1  /  A )  =  ( 1  /  B )  <-> 
A  =  B ) )
81, 7mpbid 146 1  |-  ( ph  ->  A  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1299    e. wcel 1448   class class class wbr 3875  (class class class)co 5706   CCcc 7498   0cc0 7500   1c1 7501   # cap 8209    / cdiv 8293
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-cnex 7586  ax-resscn 7587  ax-1cn 7588  ax-1re 7589  ax-icn 7590  ax-addcl 7591  ax-addrcl 7592  ax-mulcl 7593  ax-mulrcl 7594  ax-addcom 7595  ax-mulcom 7596  ax-addass 7597  ax-mulass 7598  ax-distr 7599  ax-i2m1 7600  ax-0lt1 7601  ax-1rid 7602  ax-0id 7603  ax-rnegex 7604  ax-precex 7605  ax-cnre 7606  ax-pre-ltirr 7607  ax-pre-ltwlin 7608  ax-pre-lttrn 7609  ax-pre-apti 7610  ax-pre-ltadd 7611  ax-pre-mulgt0 7612  ax-pre-mulext 7613
This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-nel 2363  df-ral 2380  df-rex 2381  df-reu 2382  df-rmo 2383  df-rab 2384  df-v 2643  df-sbc 2863  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-br 3876  df-opab 3930  df-id 4153  df-po 4156  df-iso 4157  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-iota 5024  df-fun 5061  df-fv 5067  df-riota 5662  df-ov 5709  df-oprab 5710  df-mpo 5711  df-pnf 7674  df-mnf 7675  df-xr 7676  df-ltxr 7677  df-le 7678  df-sub 7806  df-neg 7807  df-reap 8203  df-ap 8210  df-div 8294
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator