Theorem List for Intuitionistic Logic Explorer - 8701-8800 *Has distinct variable
group(s)
| Type | Label | Description |
| Statement |
| |
| Theorem | gt0ap0d 8701 |
Positive implies apart from zero. Because of the way we define
#, must be an
element of , not
just .
(Contributed by Jim Kingdon, 27-Feb-2020.)
|
     #   |
| |
| Theorem | negap0 8702 |
A number is apart from zero iff its negative is apart from zero.
(Contributed by Jim Kingdon, 27-Feb-2020.)
|
  #  #    |
| |
| Theorem | negap0d 8703 |
The negative of a number apart from zero is apart from zero.
(Contributed by Jim Kingdon, 25-Feb-2024.)
|
   #    #   |
| |
| Theorem | ltleap 8704 |
Less than in terms of non-strict order and apartness. (Contributed by Jim
Kingdon, 28-Feb-2020.)
|
     #     |
| |
| Theorem | ltap 8705 |
'Less than' implies apart. (Contributed by Jim Kingdon, 12-Aug-2021.)
|
   #   |
| |
| Theorem | gtapii 8706 |
'Greater than' implies apart. (Contributed by Jim Kingdon,
12-Aug-2021.)
|
#  |
| |
| Theorem | ltapii 8707 |
'Less than' implies apart. (Contributed by Jim Kingdon,
12-Aug-2021.)
|
#  |
| |
| Theorem | ltapi 8708 |
'Less than' implies apart. (Contributed by Jim Kingdon,
12-Aug-2021.)
|
 #   |
| |
| Theorem | gtapd 8709 |
'Greater than' implies apart. (Contributed by Jim Kingdon,
12-Aug-2021.)
|
       #   |
| |
| Theorem | ltapd 8710 |
'Less than' implies apart. (Contributed by Jim Kingdon,
12-Aug-2021.)
|
       #   |
| |
| Theorem | leltapd 8711 |
implies 'less
than' is 'apart'. (Contributed by Jim Kingdon,
13-Aug-2021.)
|
        #
   |
| |
| Theorem | ap0gt0 8712 |
A nonnegative number is apart from zero if and only if it is positive.
(Contributed by Jim Kingdon, 11-Aug-2021.)
|
    #    |
| |
| Theorem | ap0gt0d 8713 |
A nonzero nonnegative number is positive. (Contributed by Jim
Kingdon, 11-Aug-2021.)
|
     #     |
| |
| Theorem | apsub1 8714 |
Subtraction respects apartness. Analogue of subcan2 8296 for apartness.
(Contributed by Jim Kingdon, 6-Jan-2022.)
|
    #   #
     |
| |
| Theorem | subap0 8715 |
Two numbers being apart is equivalent to their difference being apart from
zero. (Contributed by Jim Kingdon, 25-Dec-2022.)
|
      # #    |
| |
| Theorem | subap0d 8716 |
Two numbers apart from each other have difference apart from zero.
(Contributed by Jim Kingdon, 12-Aug-2021.) (Proof shortened by BJ,
15-Aug-2024.)
|
     #
    #
  |
| |
| Theorem | cnstab 8717 |
Equality of complex numbers is stable. Stability here means
as defined at df-stab 832. This theorem for real
numbers is Proposition 5.2 of [BauerHanson], p. 27. (Contributed by Jim
Kingdon, 1-Aug-2023.) (Proof shortened by BJ, 15-Aug-2024.)
|
   STAB   |
| |
| Theorem | aprcl 8718 |
Reverse closure for apartness. (Contributed by Jim Kingdon,
19-Dec-2023.)
|
 # 
   |
| |
| Theorem | apsscn 8719* |
The points apart from a given point are complex numbers. (Contributed
by Jim Kingdon, 19-Dec-2023.)
|
 #
  |
| |
| Theorem | lt0ap0 8720 |
A number which is less than zero is apart from zero. (Contributed by Jim
Kingdon, 25-Feb-2024.)
|
  
#   |
| |
| Theorem | lt0ap0d 8721 |
A real number less than zero is apart from zero. Deduction form.
(Contributed by Jim Kingdon, 24-Feb-2024.)
|
     #   |
| |
| Theorem | aptap 8722 |
Complex apartness (as defined at df-ap 8654) is a tight apartness (as
defined at df-tap 7361). (Contributed by Jim Kingdon, 16-Feb-2025.)
|
# TAp  |
| |
| 4.3.7 Reciprocals
|
| |
| Theorem | recextlem1 8723 |
Lemma for recexap 8725. (Contributed by Eric Schmidt, 23-May-2007.)
|
                     |
| |
| Theorem | recexaplem2 8724 |
Lemma for recexap 8725. (Contributed by Jim Kingdon, 20-Feb-2020.)
|
      #    
   #   |
| |
| Theorem | recexap 8725* |
Existence of reciprocal of nonzero complex number. (Contributed by Jim
Kingdon, 20-Feb-2020.)
|
  #   

  |
| |
| Theorem | mulap0 8726 |
The product of two numbers apart from zero is apart from zero. Lemma
2.15 of [Geuvers], p. 6. (Contributed
by Jim Kingdon, 22-Feb-2020.)
|
   # 
 #   
 #   |
| |
| Theorem | mulap0b 8727 |
The product of two numbers apart from zero is apart from zero.
(Contributed by Jim Kingdon, 24-Feb-2020.)
|
     # #    #    |
| |
| Theorem | mulap0i 8728 |
The product of two numbers apart from zero is apart from zero.
(Contributed by Jim Kingdon, 23-Feb-2020.)
|
# #   #  |
| |
| Theorem | mulap0bd 8729 |
The product of two numbers apart from zero is apart from zero. Exercise
11.11 of [HoTT], p. (varies).
(Contributed by Jim Kingdon,
24-Feb-2020.)
|
       # #    #
   |
| |
| Theorem | mulap0d 8730 |
The product of two numbers apart from zero is apart from zero.
(Contributed by Jim Kingdon, 23-Feb-2020.)
|
     #
  #
    #
  |
| |
| Theorem | mulap0bad 8731 |
A factor of a complex number apart from zero is apart from zero.
Partial converse of mulap0d 8730 and consequence of mulap0bd 8729.
(Contributed by Jim Kingdon, 24-Feb-2020.)
|
       #
  #
  |
| |
| Theorem | mulap0bbd 8732 |
A factor of a complex number apart from zero is apart from zero.
Partial converse of mulap0d 8730 and consequence of mulap0bd 8729.
(Contributed by Jim Kingdon, 24-Feb-2020.)
|
       #
  #
  |
| |
| Theorem | mulcanapd 8733 |
Cancellation law for multiplication. (Contributed by Jim Kingdon,
21-Feb-2020.)
|
       #     
 
   |
| |
| Theorem | mulcanap2d 8734 |
Cancellation law for multiplication. (Contributed by Jim Kingdon,
21-Feb-2020.)
|
       #     
 
   |
| |
| Theorem | mulcanapad 8735 |
Cancellation of a nonzero factor on the left in an equation. One-way
deduction form of mulcanapd 8733. (Contributed by Jim Kingdon,
21-Feb-2020.)
|
       #           |
| |
| Theorem | mulcanap2ad 8736 |
Cancellation of a nonzero factor on the right in an equation. One-way
deduction form of mulcanap2d 8734. (Contributed by Jim Kingdon,
21-Feb-2020.)
|
       #           |
| |
| Theorem | mulcanap 8737 |
Cancellation law for multiplication (full theorem form). (Contributed by
Jim Kingdon, 21-Feb-2020.)
|
   #     
 
   |
| |
| Theorem | mulcanap2 8738 |
Cancellation law for multiplication. (Contributed by Jim Kingdon,
21-Feb-2020.)
|
   #     
 
   |
| |
| Theorem | mulcanapi 8739 |
Cancellation law for multiplication. (Contributed by Jim Kingdon,
21-Feb-2020.)
|
#   
 
  |
| |
| Theorem | muleqadd 8740 |
Property of numbers whose product equals their sum. Equation 5 of
[Kreyszig] p. 12. (Contributed by NM,
13-Nov-2006.)
|
          
      |
| |
| Theorem | receuap 8741* |
Existential uniqueness of reciprocals. (Contributed by Jim Kingdon,
21-Feb-2020.)
|
  #  


  |
| |
| Theorem | mul0eqap 8742 |
If two numbers are apart from each other and their product is zero, one
of them must be zero. (Contributed by Jim Kingdon, 31-Jul-2023.)
|
     #
   
  
   |
| |
| Theorem | recapb 8743* |
A complex number has a multiplicative inverse if and only if it is apart
from zero. Theorem 11.2.4 of [HoTT], p.
(varies), generalized from
real to complex numbers. (Contributed by Jim Kingdon, 18-Jan-2025.)
|
  #  

   |
| |
| 4.3.8 Division
|
| |
| Syntax | cdiv 8744 |
Extend class notation to include division.
|
 |
| |
| Definition | df-div 8745* |
Define division. Theorem divmulap 8747 relates it to multiplication, and
divclap 8750 and redivclap 8803 prove its closure laws. (Contributed by NM,
2-Feb-1995.) Use divvalap 8746 instead. (Revised by Mario Carneiro,
1-Apr-2014.) (New usage is discouraged.)
|
       

    |
| |
| Theorem | divvalap 8746* |
Value of division: the (unique) element such that
  . This is meaningful only when is apart from
zero. (Contributed by Jim Kingdon, 21-Feb-2020.)
|
  #  
    
   |
| |
| Theorem | divmulap 8747 |
Relationship between division and multiplication. (Contributed by Jim
Kingdon, 22-Feb-2020.)
|
   #     
     |
| |
| Theorem | divmulap2 8748 |
Relationship between division and multiplication. (Contributed by Jim
Kingdon, 22-Feb-2020.)
|
   #     
     |
| |
| Theorem | divmulap3 8749 |
Relationship between division and multiplication. (Contributed by Jim
Kingdon, 22-Feb-2020.)
|
   #     
     |
| |
| Theorem | divclap 8750 |
Closure law for division. (Contributed by Jim Kingdon, 22-Feb-2020.)
|
  #  
   |
| |
| Theorem | recclap 8751 |
Closure law for reciprocal. (Contributed by Jim Kingdon, 22-Feb-2020.)
|
  #   
  |
| |
| Theorem | divcanap2 8752 |
A cancellation law for division. (Contributed by Jim Kingdon,
22-Feb-2020.)
|
  #  
     |
| |
| Theorem | divcanap1 8753 |
A cancellation law for division. (Contributed by Jim Kingdon,
22-Feb-2020.)
|
  #    

  |
| |
| Theorem | diveqap0 8754 |
A ratio is zero iff the numerator is zero. (Contributed by Jim Kingdon,
22-Feb-2020.)
|
  #    
   |
| |
| Theorem | divap0b 8755 |
The ratio of numbers apart from zero is apart from zero. (Contributed by
Jim Kingdon, 22-Feb-2020.)
|
  #   #
  #
   |
| |
| Theorem | divap0 8756 |
The ratio of numbers apart from zero is apart from zero. (Contributed by
Jim Kingdon, 22-Feb-2020.)
|
   # 
 #   
 #   |
| |
| Theorem | recap0 8757 |
The reciprocal of a number apart from zero is apart from zero.
(Contributed by Jim Kingdon, 24-Feb-2020.)
|
  #    #   |
| |
| Theorem | recidap 8758 |
Multiplication of a number and its reciprocal. (Contributed by Jim
Kingdon, 24-Feb-2020.)
|
  #   
    |
| |
| Theorem | recidap2 8759 |
Multiplication of a number and its reciprocal. (Contributed by Jim
Kingdon, 24-Feb-2020.)
|
  #    

  |
| |
| Theorem | divrecap 8760 |
Relationship between division and reciprocal. (Contributed by Jim
Kingdon, 24-Feb-2020.)
|
  #  
       |
| |
| Theorem | divrecap2 8761 |
Relationship between division and reciprocal. (Contributed by Jim
Kingdon, 25-Feb-2020.)
|
  #  
       |
| |
| Theorem | divassap 8762 |
An associative law for division. (Contributed by Jim Kingdon,
25-Feb-2020.)
|
   #     
  
    |
| |
| Theorem | div23ap 8763 |
A commutative/associative law for division. (Contributed by Jim Kingdon,
25-Feb-2020.)
|
   #     
       |
| |
| Theorem | div32ap 8764 |
A commutative/associative law for division. (Contributed by Jim Kingdon,
25-Feb-2020.)
|
   #             |
| |
| Theorem | div13ap 8765 |
A commutative/associative law for division. (Contributed by Jim Kingdon,
25-Feb-2020.)
|
   #             |
| |
| Theorem | div12ap 8766 |
A commutative/associative law for division. (Contributed by Jim Kingdon,
25-Feb-2020.)
|
   #        
    |
| |
| Theorem | divmulassap 8767 |
An associative law for division and multiplication. (Contributed by Jim
Kingdon, 24-Jan-2022.)
|
   
 #     
           |
| |
| Theorem | divmulasscomap 8768 |
An associative/commutative law for division and multiplication.
(Contributed by Jim Kingdon, 24-Jan-2022.)
|
   
 #     
      
    |
| |
| Theorem | divdirap 8769 |
Distribution of division over addition. (Contributed by Jim Kingdon,
25-Feb-2020.)
|
   #     
    
    |
| |
| Theorem | divcanap3 8770 |
A cancellation law for division. (Contributed by Jim Kingdon,
25-Feb-2020.)
|
  #    
   |
| |
| Theorem | divcanap4 8771 |
A cancellation law for division. (Contributed by Jim Kingdon,
25-Feb-2020.)
|
  #    
   |
| |
| Theorem | div11ap 8772 |
One-to-one relationship for division. (Contributed by Jim Kingdon,
25-Feb-2020.)
|
   #     
 
   |
| |
| Theorem | dividap 8773 |
A number divided by itself is one. (Contributed by Jim Kingdon,
25-Feb-2020.)
|
  #   
  |
| |
| Theorem | div0ap 8774 |
Division into zero is zero. (Contributed by Jim Kingdon, 25-Feb-2020.)
|
  #   
  |
| |
| Theorem | div1 8775 |
A number divided by 1 is itself. (Contributed by NM, 9-Jan-2002.) (Proof
shortened by Mario Carneiro, 27-May-2016.)
|
     |
| |
| Theorem | 1div1e1 8776 |
1 divided by 1 is 1 (common case). (Contributed by David A. Wheeler,
7-Dec-2018.)
|
   |
| |
| Theorem | diveqap1 8777 |
Equality in terms of unit ratio. (Contributed by Jim Kingdon,
25-Feb-2020.)
|
  #    
   |
| |
| Theorem | divnegap 8778 |
Move negative sign inside of a division. (Contributed by Jim Kingdon,
25-Feb-2020.)
|
  #    
     |
| |
| Theorem | muldivdirap 8779 |
Distribution of division over addition with a multiplication.
(Contributed by Jim Kingdon, 11-Nov-2021.)
|
   #       
  
    |
| |
| Theorem | divsubdirap 8780 |
Distribution of division over subtraction. (Contributed by NM,
4-Mar-2005.)
|
   #     
    
    |
| |
| Theorem | recrecap 8781 |
A number is equal to the reciprocal of its reciprocal. (Contributed by
Jim Kingdon, 25-Feb-2020.)
|
  #   
    |
| |
| Theorem | rec11ap 8782 |
Reciprocal is one-to-one. (Contributed by Jim Kingdon, 25-Feb-2020.)
|
   # 
 #     

    |
| |
| Theorem | rec11rap 8783 |
Mutual reciprocals. (Contributed by Jim Kingdon, 25-Feb-2020.)
|
   # 
 #     
     |
| |
| Theorem | divmuldivap 8784 |
Multiplication of two ratios. (Contributed by Jim Kingdon,
25-Feb-2020.)
|
      #  
#   
     
        |
| |
| Theorem | divdivdivap 8785 |
Division of two ratios. Theorem I.15 of [Apostol] p. 18. (Contributed by
Jim Kingdon, 25-Feb-2020.)
|
   
#     #   #            
     |
| |
| Theorem | divcanap5 8786 |
Cancellation of common factor in a ratio. (Contributed by Jim Kingdon,
25-Feb-2020.)
|
   #   #  
   
 
    |
| |
| Theorem | divmul13ap 8787 |
Swap the denominators in the product of two ratios. (Contributed by Jim
Kingdon, 26-Feb-2020.)
|
      #  
#   
     
        |
| |
| Theorem | divmul24ap 8788 |
Swap the numerators in the product of two ratios. (Contributed by Jim
Kingdon, 26-Feb-2020.)
|
      #  
#   
     
        |
| |
| Theorem | divmuleqap 8789 |
Cross-multiply in an equality of ratios. (Contributed by Jim Kingdon,
26-Feb-2020.)
|
      #  
#   
      
     |
| |
| Theorem | recdivap 8790 |
The reciprocal of a ratio. (Contributed by Jim Kingdon, 26-Feb-2020.)
|
   # 
 #           |
| |
| Theorem | divcanap6 8791 |
Cancellation of inverted fractions. (Contributed by Jim Kingdon,
26-Feb-2020.)
|
   # 
 #     
     |
| |
| Theorem | divdiv32ap 8792 |
Swap denominators in a division. (Contributed by Jim Kingdon,
26-Feb-2020.)
|
   #   #  
   
      |
| |
| Theorem | divcanap7 8793 |
Cancel equal divisors in a division. (Contributed by Jim Kingdon,
26-Feb-2020.)
|
   #   #  
   
      |
| |
| Theorem | dmdcanap 8794 |
Cancellation law for division and multiplication. (Contributed by Jim
Kingdon, 26-Feb-2020.)
|
   # 
 # 

          |
| |
| Theorem | divdivap1 8795 |
Division into a fraction. (Contributed by Jim Kingdon, 26-Feb-2020.)
|
   #   #  
   
      |
| |
| Theorem | divdivap2 8796 |
Division by a fraction. (Contributed by Jim Kingdon, 26-Feb-2020.)
|
   #   #  
   
      |
| |
| Theorem | recdivap2 8797 |
Division into a reciprocal. (Contributed by Jim Kingdon, 26-Feb-2020.)
|
   # 
 #     
  
    |
| |
| Theorem | ddcanap 8798 |
Cancellation in a double division. (Contributed by Jim Kingdon,
26-Feb-2020.)
|
   # 
 #   
     |
| |
| Theorem | divadddivap 8799 |
Addition of two ratios. (Contributed by Jim Kingdon, 26-Feb-2020.)
|
      #  
#   
   
     
   
    |
| |
| Theorem | divsubdivap 8800 |
Subtraction of two ratios. (Contributed by Jim Kingdon, 26-Feb-2020.)
|
      #  
#   
   
         
    |