ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ressinbasd GIF version

Theorem ressinbasd 13102
Description: Restriction only cares about the part of the second set which intersects the base of the first. (Contributed by Stefan O'Rear, 29-Nov-2014.)
Hypotheses
Ref Expression
ressidbasd.1 (𝜑𝐵 = (Base‘𝑊))
ressidbasd.a (𝜑𝐴𝑋)
ressidbasd.w (𝜑𝑊𝑉)
Assertion
Ref Expression
ressinbasd (𝜑 → (𝑊s 𝐴) = (𝑊s (𝐴𝐵)))

Proof of Theorem ressinbasd
StepHypRef Expression
1 ressidbasd.1 . . . . . . 7 (𝜑𝐵 = (Base‘𝑊))
2 inidm 3413 . . . . . . . 8 (𝐵𝐵) = 𝐵
31ineq2d 3405 . . . . . . . 8 (𝜑 → (𝐵𝐵) = (𝐵 ∩ (Base‘𝑊)))
42, 3eqtr3id 2276 . . . . . . 7 (𝜑𝐵 = (𝐵 ∩ (Base‘𝑊)))
51, 4eqtr3d 2264 . . . . . 6 (𝜑 → (Base‘𝑊) = (𝐵 ∩ (Base‘𝑊)))
65ineq2d 3405 . . . . 5 (𝜑 → (𝐴 ∩ (Base‘𝑊)) = (𝐴 ∩ (𝐵 ∩ (Base‘𝑊))))
7 inass 3414 . . . . 5 ((𝐴𝐵) ∩ (Base‘𝑊)) = (𝐴 ∩ (𝐵 ∩ (Base‘𝑊)))
86, 7eqtr4di 2280 . . . 4 (𝜑 → (𝐴 ∩ (Base‘𝑊)) = ((𝐴𝐵) ∩ (Base‘𝑊)))
98opeq2d 3863 . . 3 (𝜑 → ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩ = ⟨(Base‘ndx), ((𝐴𝐵) ∩ (Base‘𝑊))⟩)
109oveq2d 6016 . 2 (𝜑 → (𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩) = (𝑊 sSet ⟨(Base‘ndx), ((𝐴𝐵) ∩ (Base‘𝑊))⟩))
11 ressidbasd.w . . 3 (𝜑𝑊𝑉)
12 ressidbasd.a . . 3 (𝜑𝐴𝑋)
13 ressvalsets 13092 . . 3 ((𝑊𝑉𝐴𝑋) → (𝑊s 𝐴) = (𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩))
1411, 12, 13syl2anc 411 . 2 (𝜑 → (𝑊s 𝐴) = (𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩))
15 inex1g 4219 . . . 4 (𝐴𝑋 → (𝐴𝐵) ∈ V)
1612, 15syl 14 . . 3 (𝜑 → (𝐴𝐵) ∈ V)
17 ressvalsets 13092 . . 3 ((𝑊𝑉 ∧ (𝐴𝐵) ∈ V) → (𝑊s (𝐴𝐵)) = (𝑊 sSet ⟨(Base‘ndx), ((𝐴𝐵) ∩ (Base‘𝑊))⟩))
1811, 16, 17syl2anc 411 . 2 (𝜑 → (𝑊s (𝐴𝐵)) = (𝑊 sSet ⟨(Base‘ndx), ((𝐴𝐵) ∩ (Base‘𝑊))⟩))
1910, 14, 183eqtr4d 2272 1 (𝜑 → (𝑊s 𝐴) = (𝑊s (𝐴𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  wcel 2200  Vcvv 2799  cin 3196  cop 3669  cfv 5317  (class class class)co 6000  ndxcnx 13024   sSet csts 13025  Basecbs 13027  s cress 13028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1re 8089  ax-addrcl 8092
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-iota 5277  df-fun 5319  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-inn 9107  df-ndx 13030  df-slot 13031  df-base 13033  df-sets 13034  df-iress 13035
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator