| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ressinbasd | GIF version | ||
| Description: Restriction only cares about the part of the second set which intersects the base of the first. (Contributed by Stefan O'Rear, 29-Nov-2014.) |
| Ref | Expression |
|---|---|
| ressidbasd.1 | ⊢ (𝜑 → 𝐵 = (Base‘𝑊)) |
| ressidbasd.a | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
| ressidbasd.w | ⊢ (𝜑 → 𝑊 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| ressinbasd | ⊢ (𝜑 → (𝑊 ↾s 𝐴) = (𝑊 ↾s (𝐴 ∩ 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressidbasd.1 | . . . . . . 7 ⊢ (𝜑 → 𝐵 = (Base‘𝑊)) | |
| 2 | inidm 3386 | . . . . . . . 8 ⊢ (𝐵 ∩ 𝐵) = 𝐵 | |
| 3 | 1 | ineq2d 3378 | . . . . . . . 8 ⊢ (𝜑 → (𝐵 ∩ 𝐵) = (𝐵 ∩ (Base‘𝑊))) |
| 4 | 2, 3 | eqtr3id 2253 | . . . . . . 7 ⊢ (𝜑 → 𝐵 = (𝐵 ∩ (Base‘𝑊))) |
| 5 | 1, 4 | eqtr3d 2241 | . . . . . 6 ⊢ (𝜑 → (Base‘𝑊) = (𝐵 ∩ (Base‘𝑊))) |
| 6 | 5 | ineq2d 3378 | . . . . 5 ⊢ (𝜑 → (𝐴 ∩ (Base‘𝑊)) = (𝐴 ∩ (𝐵 ∩ (Base‘𝑊)))) |
| 7 | inass 3387 | . . . . 5 ⊢ ((𝐴 ∩ 𝐵) ∩ (Base‘𝑊)) = (𝐴 ∩ (𝐵 ∩ (Base‘𝑊))) | |
| 8 | 6, 7 | eqtr4di 2257 | . . . 4 ⊢ (𝜑 → (𝐴 ∩ (Base‘𝑊)) = ((𝐴 ∩ 𝐵) ∩ (Base‘𝑊))) |
| 9 | 8 | opeq2d 3832 | . . 3 ⊢ (𝜑 → 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉 = 〈(Base‘ndx), ((𝐴 ∩ 𝐵) ∩ (Base‘𝑊))〉) |
| 10 | 9 | oveq2d 5973 | . 2 ⊢ (𝜑 → (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉) = (𝑊 sSet 〈(Base‘ndx), ((𝐴 ∩ 𝐵) ∩ (Base‘𝑊))〉)) |
| 11 | ressidbasd.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ 𝑉) | |
| 12 | ressidbasd.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
| 13 | ressvalsets 12971 | . . 3 ⊢ ((𝑊 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋) → (𝑊 ↾s 𝐴) = (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉)) | |
| 14 | 11, 12, 13 | syl2anc 411 | . 2 ⊢ (𝜑 → (𝑊 ↾s 𝐴) = (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉)) |
| 15 | inex1g 4188 | . . . 4 ⊢ (𝐴 ∈ 𝑋 → (𝐴 ∩ 𝐵) ∈ V) | |
| 16 | 12, 15 | syl 14 | . . 3 ⊢ (𝜑 → (𝐴 ∩ 𝐵) ∈ V) |
| 17 | ressvalsets 12971 | . . 3 ⊢ ((𝑊 ∈ 𝑉 ∧ (𝐴 ∩ 𝐵) ∈ V) → (𝑊 ↾s (𝐴 ∩ 𝐵)) = (𝑊 sSet 〈(Base‘ndx), ((𝐴 ∩ 𝐵) ∩ (Base‘𝑊))〉)) | |
| 18 | 11, 16, 17 | syl2anc 411 | . 2 ⊢ (𝜑 → (𝑊 ↾s (𝐴 ∩ 𝐵)) = (𝑊 sSet 〈(Base‘ndx), ((𝐴 ∩ 𝐵) ∩ (Base‘𝑊))〉)) |
| 19 | 10, 14, 18 | 3eqtr4d 2249 | 1 ⊢ (𝜑 → (𝑊 ↾s 𝐴) = (𝑊 ↾s (𝐴 ∩ 𝐵))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 Vcvv 2773 ∩ cin 3169 〈cop 3641 ‘cfv 5280 (class class class)co 5957 ndxcnx 12904 sSet csts 12905 Basecbs 12907 ↾s cress 12908 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-cnex 8036 ax-resscn 8037 ax-1re 8039 ax-addrcl 8042 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-iota 5241 df-fun 5282 df-fv 5288 df-ov 5960 df-oprab 5961 df-mpo 5962 df-inn 9057 df-ndx 12910 df-slot 12911 df-base 12913 df-sets 12914 df-iress 12915 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |