ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ressinbasd GIF version

Theorem ressinbasd 12981
Description: Restriction only cares about the part of the second set which intersects the base of the first. (Contributed by Stefan O'Rear, 29-Nov-2014.)
Hypotheses
Ref Expression
ressidbasd.1 (𝜑𝐵 = (Base‘𝑊))
ressidbasd.a (𝜑𝐴𝑋)
ressidbasd.w (𝜑𝑊𝑉)
Assertion
Ref Expression
ressinbasd (𝜑 → (𝑊s 𝐴) = (𝑊s (𝐴𝐵)))

Proof of Theorem ressinbasd
StepHypRef Expression
1 ressidbasd.1 . . . . . . 7 (𝜑𝐵 = (Base‘𝑊))
2 inidm 3386 . . . . . . . 8 (𝐵𝐵) = 𝐵
31ineq2d 3378 . . . . . . . 8 (𝜑 → (𝐵𝐵) = (𝐵 ∩ (Base‘𝑊)))
42, 3eqtr3id 2253 . . . . . . 7 (𝜑𝐵 = (𝐵 ∩ (Base‘𝑊)))
51, 4eqtr3d 2241 . . . . . 6 (𝜑 → (Base‘𝑊) = (𝐵 ∩ (Base‘𝑊)))
65ineq2d 3378 . . . . 5 (𝜑 → (𝐴 ∩ (Base‘𝑊)) = (𝐴 ∩ (𝐵 ∩ (Base‘𝑊))))
7 inass 3387 . . . . 5 ((𝐴𝐵) ∩ (Base‘𝑊)) = (𝐴 ∩ (𝐵 ∩ (Base‘𝑊)))
86, 7eqtr4di 2257 . . . 4 (𝜑 → (𝐴 ∩ (Base‘𝑊)) = ((𝐴𝐵) ∩ (Base‘𝑊)))
98opeq2d 3832 . . 3 (𝜑 → ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩ = ⟨(Base‘ndx), ((𝐴𝐵) ∩ (Base‘𝑊))⟩)
109oveq2d 5973 . 2 (𝜑 → (𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩) = (𝑊 sSet ⟨(Base‘ndx), ((𝐴𝐵) ∩ (Base‘𝑊))⟩))
11 ressidbasd.w . . 3 (𝜑𝑊𝑉)
12 ressidbasd.a . . 3 (𝜑𝐴𝑋)
13 ressvalsets 12971 . . 3 ((𝑊𝑉𝐴𝑋) → (𝑊s 𝐴) = (𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩))
1411, 12, 13syl2anc 411 . 2 (𝜑 → (𝑊s 𝐴) = (𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩))
15 inex1g 4188 . . . 4 (𝐴𝑋 → (𝐴𝐵) ∈ V)
1612, 15syl 14 . . 3 (𝜑 → (𝐴𝐵) ∈ V)
17 ressvalsets 12971 . . 3 ((𝑊𝑉 ∧ (𝐴𝐵) ∈ V) → (𝑊s (𝐴𝐵)) = (𝑊 sSet ⟨(Base‘ndx), ((𝐴𝐵) ∩ (Base‘𝑊))⟩))
1811, 16, 17syl2anc 411 . 2 (𝜑 → (𝑊s (𝐴𝐵)) = (𝑊 sSet ⟨(Base‘ndx), ((𝐴𝐵) ∩ (Base‘𝑊))⟩))
1910, 14, 183eqtr4d 2249 1 (𝜑 → (𝑊s 𝐴) = (𝑊s (𝐴𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  wcel 2177  Vcvv 2773  cin 3169  cop 3641  cfv 5280  (class class class)co 5957  ndxcnx 12904   sSet csts 12905  Basecbs 12907  s cress 12908
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-cnex 8036  ax-resscn 8037  ax-1re 8039  ax-addrcl 8042
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3003  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-iota 5241  df-fun 5282  df-fv 5288  df-ov 5960  df-oprab 5961  df-mpo 5962  df-inn 9057  df-ndx 12910  df-slot 12911  df-base 12913  df-sets 12914  df-iress 12915
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator