ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ressinbasd GIF version

Theorem ressinbasd 12825
Description: Restriction only cares about the part of the second set which intersects the base of the first. (Contributed by Stefan O'Rear, 29-Nov-2014.)
Hypotheses
Ref Expression
ressidbasd.1 (𝜑𝐵 = (Base‘𝑊))
ressidbasd.a (𝜑𝐴𝑋)
ressidbasd.w (𝜑𝑊𝑉)
Assertion
Ref Expression
ressinbasd (𝜑 → (𝑊s 𝐴) = (𝑊s (𝐴𝐵)))

Proof of Theorem ressinbasd
StepHypRef Expression
1 ressidbasd.1 . . . . . . 7 (𝜑𝐵 = (Base‘𝑊))
2 inidm 3381 . . . . . . . 8 (𝐵𝐵) = 𝐵
31ineq2d 3373 . . . . . . . 8 (𝜑 → (𝐵𝐵) = (𝐵 ∩ (Base‘𝑊)))
42, 3eqtr3id 2251 . . . . . . 7 (𝜑𝐵 = (𝐵 ∩ (Base‘𝑊)))
51, 4eqtr3d 2239 . . . . . 6 (𝜑 → (Base‘𝑊) = (𝐵 ∩ (Base‘𝑊)))
65ineq2d 3373 . . . . 5 (𝜑 → (𝐴 ∩ (Base‘𝑊)) = (𝐴 ∩ (𝐵 ∩ (Base‘𝑊))))
7 inass 3382 . . . . 5 ((𝐴𝐵) ∩ (Base‘𝑊)) = (𝐴 ∩ (𝐵 ∩ (Base‘𝑊)))
86, 7eqtr4di 2255 . . . 4 (𝜑 → (𝐴 ∩ (Base‘𝑊)) = ((𝐴𝐵) ∩ (Base‘𝑊)))
98opeq2d 3825 . . 3 (𝜑 → ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩ = ⟨(Base‘ndx), ((𝐴𝐵) ∩ (Base‘𝑊))⟩)
109oveq2d 5950 . 2 (𝜑 → (𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩) = (𝑊 sSet ⟨(Base‘ndx), ((𝐴𝐵) ∩ (Base‘𝑊))⟩))
11 ressidbasd.w . . 3 (𝜑𝑊𝑉)
12 ressidbasd.a . . 3 (𝜑𝐴𝑋)
13 ressvalsets 12815 . . 3 ((𝑊𝑉𝐴𝑋) → (𝑊s 𝐴) = (𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩))
1411, 12, 13syl2anc 411 . 2 (𝜑 → (𝑊s 𝐴) = (𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩))
15 inex1g 4179 . . . 4 (𝐴𝑋 → (𝐴𝐵) ∈ V)
1612, 15syl 14 . . 3 (𝜑 → (𝐴𝐵) ∈ V)
17 ressvalsets 12815 . . 3 ((𝑊𝑉 ∧ (𝐴𝐵) ∈ V) → (𝑊s (𝐴𝐵)) = (𝑊 sSet ⟨(Base‘ndx), ((𝐴𝐵) ∩ (Base‘𝑊))⟩))
1811, 16, 17syl2anc 411 . 2 (𝜑 → (𝑊s (𝐴𝐵)) = (𝑊 sSet ⟨(Base‘ndx), ((𝐴𝐵) ∩ (Base‘𝑊))⟩))
1910, 14, 183eqtr4d 2247 1 (𝜑 → (𝑊s 𝐴) = (𝑊s (𝐴𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1372  wcel 2175  Vcvv 2771  cin 3164  cop 3635  cfv 5268  (class class class)co 5934  ndxcnx 12748   sSet csts 12749  Basecbs 12751  s cress 12752
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-cnex 7998  ax-resscn 7999  ax-1re 8001  ax-addrcl 8004
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-sbc 2998  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4338  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-iota 5229  df-fun 5270  df-fv 5276  df-ov 5937  df-oprab 5938  df-mpo 5939  df-inn 9019  df-ndx 12754  df-slot 12755  df-base 12757  df-sets 12758  df-iress 12759
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator