![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rngabl | GIF version |
Description: A non-unital ring is an (additive) abelian group. (Contributed by AV, 17-Feb-2020.) |
Ref | Expression |
---|---|
rngabl | ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Abel) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2189 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
2 | eqid 2189 | . . 3 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
3 | eqid 2189 | . . 3 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
4 | eqid 2189 | . . 3 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
5 | 1, 2, 3, 4 | isrng 13305 | . 2 ⊢ (𝑅 ∈ Rng ↔ (𝑅 ∈ Abel ∧ (mulGrp‘𝑅) ∈ Smgrp ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑥(.r‘𝑅)(𝑦(+g‘𝑅)𝑧)) = ((𝑥(.r‘𝑅)𝑦)(+g‘𝑅)(𝑥(.r‘𝑅)𝑧)) ∧ ((𝑥(+g‘𝑅)𝑦)(.r‘𝑅)𝑧) = ((𝑥(.r‘𝑅)𝑧)(+g‘𝑅)(𝑦(.r‘𝑅)𝑧))))) |
6 | 5 | simp1bi 1014 | 1 ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Abel) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2160 ∀wral 2468 ‘cfv 5235 (class class class)co 5897 Basecbs 12515 +gcplusg 12592 .rcmulr 12593 Smgrpcsgrp 12879 Abelcabl 13241 mulGrpcmgp 13291 Rngcrng 13303 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-cnex 7933 ax-resscn 7934 ax-1re 7936 ax-addrcl 7939 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ral 2473 df-rex 2474 df-rab 2477 df-v 2754 df-sbc 2978 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-br 4019 df-opab 4080 df-mpt 4081 df-id 4311 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-res 4656 df-iota 5196 df-fun 5237 df-fn 5238 df-fv 5243 df-ov 5900 df-inn 8951 df-2 9009 df-3 9010 df-ndx 12518 df-slot 12519 df-base 12521 df-plusg 12605 df-mulr 12606 df-rng 13304 |
This theorem is referenced by: rnggrp 13309 rnglz 13316 rngansg 13321 rngressid 13325 imasrng 13327 opprrng 13444 subrngringnsg 13569 issubrng2 13574 rnglidlrng 13831 2idlcpblrng 13855 qus2idrng 13857 |
Copyright terms: Public domain | W3C validator |