Proof of Theorem 2idlcpblrng
Step | Hyp | Ref
| Expression |
1 | | simpl1 1002 |
. . . 4
   Rng
SubGrp         
Rng |
2 | | simpl3 1004 |
. . . . . . . 8
   Rng
SubGrp         
SubGrp    |
3 | | 2idlcpblrng.x |
. . . . . . . . 9
     |
4 | | 2idlcpblrng.r |
. . . . . . . . 9

~QG   |
5 | 3, 4 | eqger 13163 |
. . . . . . . 8
 SubGrp 
  |
6 | 2, 5 | syl 14 |
. . . . . . 7
   Rng
SubGrp         
  |
7 | | simprl 529 |
. . . . . . 7
   Rng
SubGrp              |
8 | 6, 7 | ersym 6571 |
. . . . . 6
   Rng
SubGrp              |
9 | | rngabl 13289 |
. . . . . . . 8
 Rng   |
10 | 9 | 3ad2ant1 1020 |
. . . . . . 7
  Rng
SubGrp  
  |
11 | | eqid 2189 |
. . . . . . . . . . . 12
LIdeal  LIdeal   |
12 | | eqid 2189 |
. . . . . . . . . . . 12
oppr  oppr   |
13 | | eqid 2189 |
. . . . . . . . . . . 12
LIdeal oppr   LIdeal oppr    |
14 | | 2idlcpblrng.i |
. . . . . . . . . . . 12
2Ideal   |
15 | 11, 12, 13, 14 | 2idlelb 13820 |
. . . . . . . . . . 11

 LIdeal 
LIdeal oppr      |
16 | 15 | simplbi 274 |
. . . . . . . . . 10
 LIdeal    |
17 | 16 | 3ad2ant2 1021 |
. . . . . . . . 9
  Rng
SubGrp  
LIdeal    |
18 | 17 | adantr 276 |
. . . . . . . 8
   Rng
SubGrp         
LIdeal    |
19 | 3, 11 | lidlss 13792 |
. . . . . . . 8
 LIdeal 
  |
20 | 18, 19 | syl 14 |
. . . . . . 7
   Rng
SubGrp            |
21 | | eqid 2189 |
. . . . . . . 8
         |
22 | 3, 21, 4 | eqgabl 13267 |
. . . . . . 7
     

            |
23 | 10, 20, 22 | syl2an2r 595 |
. . . . . 6
   Rng
SubGrp             
            |
24 | 8, 23 | mpbid 147 |
. . . . 5
   Rng
SubGrp          
           |
25 | 24 | simp2d 1012 |
. . . 4
   Rng
SubGrp         
  |
26 | | simprr 531 |
. . . . . 6
   Rng
SubGrp              |
27 | 3, 21, 4 | eqgabl 13267 |
. . . . . . 7
     

            |
28 | 10, 20, 27 | syl2an2r 595 |
. . . . . 6
   Rng
SubGrp             
            |
29 | 26, 28 | mpbid 147 |
. . . . 5
   Rng
SubGrp          
           |
30 | 29 | simp1d 1011 |
. . . 4
   Rng
SubGrp         
  |
31 | | 2idlcpblrng.t |
. . . . 5
     |
32 | 3, 31 | rngcl 13298 |
. . . 4
  Rng
     |
33 | 1, 25, 30, 32 | syl3anc 1249 |
. . 3
   Rng
SubGrp              |
34 | 24 | simp1d 1011 |
. . . 4
   Rng
SubGrp         
  |
35 | 29 | simp2d 1012 |
. . . 4
   Rng
SubGrp         
  |
36 | 3, 31 | rngcl 13298 |
. . . 4
  Rng
     |
37 | 1, 34, 35, 36 | syl3anc 1249 |
. . 3
   Rng
SubGrp              |
38 | | rnggrp 13292 |
. . . . . . 7
 Rng   |
39 | 38 | 3ad2ant1 1020 |
. . . . . 6
  Rng
SubGrp  
  |
40 | 39 | adantr 276 |
. . . . 5
   Rng
SubGrp         
  |
41 | 3, 31 | rngcl 13298 |
. . . . . 6
  Rng
     |
42 | 1, 34, 30, 41 | syl3anc 1249 |
. . . . 5
   Rng
SubGrp              |
43 | 3, 21 | grpnnncan2 13041 |
. . . . 5
       
                                                 |
44 | 40, 37, 33, 42, 43 | syl13anc 1251 |
. . . 4
   Rng
SubGrp                                                        |
45 | 3, 31, 21, 1, 34, 35, 30 | rngsubdi 13305 |
. . . . . 6
   Rng
SubGrp                                  |
46 | | eqid 2189 |
. . . . . . . . . 10
         |
47 | 46 | subg0cl 13121 |
. . . . . . . . 9
 SubGrp 
      |
48 | 47 | 3ad2ant3 1022 |
. . . . . . . 8
  Rng
SubGrp  
      |
49 | 48 | adantr 276 |
. . . . . . 7
   Rng
SubGrp                |
50 | 29 | simp3d 1013 |
. . . . . . 7
   Rng
SubGrp                    |
51 | 46, 3, 31, 11 | rnglidlmcl 13796 |
. . . . . . 7
   Rng
LIdeal 
    

                      |
52 | 1, 18, 49, 34, 50, 51 | syl32anc 1257 |
. . . . . 6
   Rng
SubGrp                      |
53 | 45, 52 | eqeltrrd 2267 |
. . . . 5
   Rng
SubGrp                        |
54 | 3, 21 | grpsubcl 13024 |
. . . . . . . . 9
 
           |
55 | 40, 25, 34, 54 | syl3anc 1249 |
. . . . . . . 8
   Rng
SubGrp                    |
56 | | eqid 2189 |
. . . . . . . . 9
   oppr      oppr    |
57 | 3, 31, 12, 56 | opprmulg 13421 |
. . . . . . . 8
  Rng
              oppr                         |
58 | 1, 30, 55, 57 | syl3anc 1249 |
. . . . . . 7
   Rng
SubGrp               oppr                         |
59 | 3, 31, 21, 1, 25, 34, 30 | rngsubdir 13306 |
. . . . . . 7
   Rng
SubGrp                                  |
60 | 58, 59 | eqtrd 2222 |
. . . . . 6
   Rng
SubGrp               oppr                           |
61 | 12 | opprrng 13427 |
. . . . . . . . 9
 Rng oppr  Rng |
62 | 61 | 3ad2ant1 1020 |
. . . . . . . 8
  Rng
SubGrp  
oppr  Rng |
63 | 62 | adantr 276 |
. . . . . . 7
   Rng
SubGrp          oppr  Rng |
64 | 15 | simprbi 275 |
. . . . . . . . 9
 LIdeal oppr     |
65 | 64 | 3ad2ant2 1021 |
. . . . . . . 8
  Rng
SubGrp  
LIdeal oppr     |
66 | 65 | adantr 276 |
. . . . . . 7
   Rng
SubGrp         
LIdeal oppr     |
67 | 12, 46 | oppr0g 13431 |
. . . . . . . . 9
 Rng        oppr     |
68 | 1, 67 | syl 14 |
. . . . . . . 8
   Rng
SubGrp                 oppr     |
69 | 68, 49 | eqeltrrd 2267 |
. . . . . . 7
   Rng
SubGrp             oppr     |
70 | 12, 3 | opprbasg 13425 |
. . . . . . . . 9
 Rng    oppr     |
71 | 1, 70 | syl 14 |
. . . . . . . 8
   Rng
SubGrp         
   oppr     |
72 | 30, 71 | eleqtrd 2268 |
. . . . . . 7
   Rng
SubGrp         
   oppr     |
73 | 24 | simp3d 1013 |
. . . . . . 7
   Rng
SubGrp                    |
74 | | eqid 2189 |
. . . . . . . 8
   oppr      oppr    |
75 | | eqid 2189 |
. . . . . . . 8
   oppr      oppr    |
76 | 74, 75, 56, 13 | rnglidlmcl 13796 |
. . . . . . 7
   oppr  Rng
LIdeal oppr      oppr    
   oppr                  oppr               |
77 | 63, 66, 69, 72, 73, 76 | syl32anc 1257 |
. . . . . 6
   Rng
SubGrp               oppr               |
78 | 60, 77 | eqeltrrd 2267 |
. . . . 5
   Rng
SubGrp                        |
79 | 21 | subgsubcl 13124 |
. . . . 5
  SubGrp                                                             |
80 | 2, 53, 78, 79 | syl3anc 1249 |
. . . 4
   Rng
SubGrp                                            |
81 | 44, 80 | eqeltrrd 2267 |
. . 3
   Rng
SubGrp                        |
82 | 3, 21, 4 | eqgabl 13267 |
. . . 4
         
                     |
83 | 10, 20, 82 | syl2an2r 595 |
. . 3
   Rng
SubGrp                                      |
84 | 33, 37, 81, 83 | mpbir3and 1182 |
. 2
   Rng
SubGrp                  |
85 | 84 | ex 115 |
1
  Rng
SubGrp  
                |