Proof of Theorem 2idlcpblrng
| Step | Hyp | Ref
| Expression |
| 1 | | simpl1 1002 |
. . . 4
   Rng
SubGrp         
Rng |
| 2 | | simpl3 1004 |
. . . . . . . 8
   Rng
SubGrp         
SubGrp    |
| 3 | | 2idlcpblrng.x |
. . . . . . . . 9
     |
| 4 | | 2idlcpblrng.r |
. . . . . . . . 9

~QG   |
| 5 | 3, 4 | eqger 13430 |
. . . . . . . 8
 SubGrp 
  |
| 6 | 2, 5 | syl 14 |
. . . . . . 7
   Rng
SubGrp         
  |
| 7 | | simprl 529 |
. . . . . . 7
   Rng
SubGrp              |
| 8 | 6, 7 | ersym 6613 |
. . . . . 6
   Rng
SubGrp              |
| 9 | | rngabl 13567 |
. . . . . . . 8
 Rng   |
| 10 | 9 | 3ad2ant1 1020 |
. . . . . . 7
  Rng
SubGrp  
  |
| 11 | | eqid 2196 |
. . . . . . . . . . . 12
LIdeal  LIdeal   |
| 12 | | eqid 2196 |
. . . . . . . . . . . 12
oppr  oppr   |
| 13 | | eqid 2196 |
. . . . . . . . . . . 12
LIdeal oppr   LIdeal oppr    |
| 14 | | 2idlcpblrng.i |
. . . . . . . . . . . 12
2Ideal   |
| 15 | 11, 12, 13, 14 | 2idlelb 14137 |
. . . . . . . . . . 11

 LIdeal 
LIdeal oppr      |
| 16 | 15 | simplbi 274 |
. . . . . . . . . 10
 LIdeal    |
| 17 | 16 | 3ad2ant2 1021 |
. . . . . . . . 9
  Rng
SubGrp  
LIdeal    |
| 18 | 17 | adantr 276 |
. . . . . . . 8
   Rng
SubGrp         
LIdeal    |
| 19 | 3, 11 | lidlss 14108 |
. . . . . . . 8
 LIdeal 
  |
| 20 | 18, 19 | syl 14 |
. . . . . . 7
   Rng
SubGrp            |
| 21 | | eqid 2196 |
. . . . . . . 8
         |
| 22 | 3, 21, 4 | eqgabl 13536 |
. . . . . . 7
     

            |
| 23 | 10, 20, 22 | syl2an2r 595 |
. . . . . 6
   Rng
SubGrp             
            |
| 24 | 8, 23 | mpbid 147 |
. . . . 5
   Rng
SubGrp          
           |
| 25 | 24 | simp2d 1012 |
. . . 4
   Rng
SubGrp         
  |
| 26 | | simprr 531 |
. . . . . 6
   Rng
SubGrp              |
| 27 | 3, 21, 4 | eqgabl 13536 |
. . . . . . 7
     

            |
| 28 | 10, 20, 27 | syl2an2r 595 |
. . . . . 6
   Rng
SubGrp             
            |
| 29 | 26, 28 | mpbid 147 |
. . . . 5
   Rng
SubGrp          
           |
| 30 | 29 | simp1d 1011 |
. . . 4
   Rng
SubGrp         
  |
| 31 | | 2idlcpblrng.t |
. . . . 5
     |
| 32 | 3, 31 | rngcl 13576 |
. . . 4
  Rng
     |
| 33 | 1, 25, 30, 32 | syl3anc 1249 |
. . 3
   Rng
SubGrp              |
| 34 | 24 | simp1d 1011 |
. . . 4
   Rng
SubGrp         
  |
| 35 | 29 | simp2d 1012 |
. . . 4
   Rng
SubGrp         
  |
| 36 | 3, 31 | rngcl 13576 |
. . . 4
  Rng
     |
| 37 | 1, 34, 35, 36 | syl3anc 1249 |
. . 3
   Rng
SubGrp              |
| 38 | | rnggrp 13570 |
. . . . . . 7
 Rng   |
| 39 | 38 | 3ad2ant1 1020 |
. . . . . 6
  Rng
SubGrp  
  |
| 40 | 39 | adantr 276 |
. . . . 5
   Rng
SubGrp         
  |
| 41 | 3, 31 | rngcl 13576 |
. . . . . 6
  Rng
     |
| 42 | 1, 34, 30, 41 | syl3anc 1249 |
. . . . 5
   Rng
SubGrp              |
| 43 | 3, 21 | grpnnncan2 13299 |
. . . . 5
       
                                                 |
| 44 | 40, 37, 33, 42, 43 | syl13anc 1251 |
. . . 4
   Rng
SubGrp                                                        |
| 45 | 3, 31, 21, 1, 34, 35, 30 | rngsubdi 13583 |
. . . . . 6
   Rng
SubGrp                                  |
| 46 | | eqid 2196 |
. . . . . . . . . 10
         |
| 47 | 46 | subg0cl 13388 |
. . . . . . . . 9
 SubGrp 
      |
| 48 | 47 | 3ad2ant3 1022 |
. . . . . . . 8
  Rng
SubGrp  
      |
| 49 | 48 | adantr 276 |
. . . . . . 7
   Rng
SubGrp                |
| 50 | 29 | simp3d 1013 |
. . . . . . 7
   Rng
SubGrp                    |
| 51 | 46, 3, 31, 11 | rnglidlmcl 14112 |
. . . . . . 7
   Rng
LIdeal 
    

                      |
| 52 | 1, 18, 49, 34, 50, 51 | syl32anc 1257 |
. . . . . 6
   Rng
SubGrp                      |
| 53 | 45, 52 | eqeltrrd 2274 |
. . . . 5
   Rng
SubGrp                        |
| 54 | 3, 21 | grpsubcl 13282 |
. . . . . . . . 9
 
           |
| 55 | 40, 25, 34, 54 | syl3anc 1249 |
. . . . . . . 8
   Rng
SubGrp                    |
| 56 | | eqid 2196 |
. . . . . . . . 9
   oppr      oppr    |
| 57 | 3, 31, 12, 56 | opprmulg 13703 |
. . . . . . . 8
  Rng
              oppr                         |
| 58 | 1, 30, 55, 57 | syl3anc 1249 |
. . . . . . 7
   Rng
SubGrp               oppr                         |
| 59 | 3, 31, 21, 1, 25, 34, 30 | rngsubdir 13584 |
. . . . . . 7
   Rng
SubGrp                                  |
| 60 | 58, 59 | eqtrd 2229 |
. . . . . 6
   Rng
SubGrp               oppr                           |
| 61 | 12 | opprrng 13709 |
. . . . . . . . 9
 Rng oppr  Rng |
| 62 | 61 | 3ad2ant1 1020 |
. . . . . . . 8
  Rng
SubGrp  
oppr  Rng |
| 63 | 62 | adantr 276 |
. . . . . . 7
   Rng
SubGrp          oppr  Rng |
| 64 | 15 | simprbi 275 |
. . . . . . . . 9
 LIdeal oppr     |
| 65 | 64 | 3ad2ant2 1021 |
. . . . . . . 8
  Rng
SubGrp  
LIdeal oppr     |
| 66 | 65 | adantr 276 |
. . . . . . 7
   Rng
SubGrp         
LIdeal oppr     |
| 67 | 12, 46 | oppr0g 13713 |
. . . . . . . . 9
 Rng        oppr     |
| 68 | 1, 67 | syl 14 |
. . . . . . . 8
   Rng
SubGrp                 oppr     |
| 69 | 68, 49 | eqeltrrd 2274 |
. . . . . . 7
   Rng
SubGrp             oppr     |
| 70 | 12, 3 | opprbasg 13707 |
. . . . . . . . 9
 Rng    oppr     |
| 71 | 1, 70 | syl 14 |
. . . . . . . 8
   Rng
SubGrp         
   oppr     |
| 72 | 30, 71 | eleqtrd 2275 |
. . . . . . 7
   Rng
SubGrp         
   oppr     |
| 73 | 24 | simp3d 1013 |
. . . . . . 7
   Rng
SubGrp                    |
| 74 | | eqid 2196 |
. . . . . . . 8
   oppr      oppr    |
| 75 | | eqid 2196 |
. . . . . . . 8
   oppr      oppr    |
| 76 | 74, 75, 56, 13 | rnglidlmcl 14112 |
. . . . . . 7
   oppr  Rng
LIdeal oppr      oppr    
   oppr                  oppr               |
| 77 | 63, 66, 69, 72, 73, 76 | syl32anc 1257 |
. . . . . 6
   Rng
SubGrp               oppr               |
| 78 | 60, 77 | eqeltrrd 2274 |
. . . . 5
   Rng
SubGrp                        |
| 79 | 21 | subgsubcl 13391 |
. . . . 5
  SubGrp                                                             |
| 80 | 2, 53, 78, 79 | syl3anc 1249 |
. . . 4
   Rng
SubGrp                                            |
| 81 | 44, 80 | eqeltrrd 2274 |
. . 3
   Rng
SubGrp                        |
| 82 | 3, 21, 4 | eqgabl 13536 |
. . . 4
         
                     |
| 83 | 10, 20, 82 | syl2an2r 595 |
. . 3
   Rng
SubGrp                                      |
| 84 | 33, 37, 81, 83 | mpbir3and 1182 |
. 2
   Rng
SubGrp                  |
| 85 | 84 | ex 115 |
1
  Rng
SubGrp  
                |