ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2idlcpblrng Unicode version

Theorem 2idlcpblrng 13838
Description: The coset equivalence relation for a two-sided ideal is compatible with ring multiplication. (Contributed by Mario Carneiro, 14-Jun-2015.) Generalization for non-unital rings and two-sided ideals which are subgroups of the additive group of the non-unital ring. (Revised by AV, 23-Feb-2025.)
Hypotheses
Ref Expression
2idlcpblrng.x  |-  X  =  ( Base `  R
)
2idlcpblrng.r  |-  E  =  ( R ~QG  S )
2idlcpblrng.i  |-  I  =  (2Ideal `  R )
2idlcpblrng.t  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
2idlcpblrng  |-  ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R )
)  ->  ( ( A E C  /\  B E D )  ->  ( A  .x.  B ) E ( C  .x.  D
) ) )

Proof of Theorem 2idlcpblrng
StepHypRef Expression
1 simpl1 1002 . . . 4  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  ->  R  e. Rng )
2 simpl3 1004 . . . . . . . 8  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  ->  S  e.  (SubGrp `  R
) )
3 2idlcpblrng.x . . . . . . . . 9  |-  X  =  ( Base `  R
)
4 2idlcpblrng.r . . . . . . . . 9  |-  E  =  ( R ~QG  S )
53, 4eqger 13163 . . . . . . . 8  |-  ( S  e.  (SubGrp `  R
)  ->  E  Er  X )
62, 5syl 14 . . . . . . 7  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  ->  E  Er  X )
7 simprl 529 . . . . . . 7  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  ->  A E C )
86, 7ersym 6571 . . . . . 6  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  ->  C E A )
9 rngabl 13289 . . . . . . . 8  |-  ( R  e. Rng  ->  R  e.  Abel )
1093ad2ant1 1020 . . . . . . 7  |-  ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R )
)  ->  R  e.  Abel )
11 eqid 2189 . . . . . . . . . . . 12  |-  (LIdeal `  R )  =  (LIdeal `  R )
12 eqid 2189 . . . . . . . . . . . 12  |-  (oppr `  R
)  =  (oppr `  R
)
13 eqid 2189 . . . . . . . . . . . 12  |-  (LIdeal `  (oppr `  R ) )  =  (LIdeal `  (oppr
`  R ) )
14 2idlcpblrng.i . . . . . . . . . . . 12  |-  I  =  (2Ideal `  R )
1511, 12, 13, 142idlelb 13820 . . . . . . . . . . 11  |-  ( S  e.  I  <->  ( S  e.  (LIdeal `  R )  /\  S  e.  (LIdeal `  (oppr
`  R ) ) ) )
1615simplbi 274 . . . . . . . . . 10  |-  ( S  e.  I  ->  S  e.  (LIdeal `  R )
)
17163ad2ant2 1021 . . . . . . . . 9  |-  ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R )
)  ->  S  e.  (LIdeal `  R ) )
1817adantr 276 . . . . . . . 8  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  ->  S  e.  (LIdeal `  R
) )
193, 11lidlss 13792 . . . . . . . 8  |-  ( S  e.  (LIdeal `  R
)  ->  S  C_  X
)
2018, 19syl 14 . . . . . . 7  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  ->  S  C_  X )
21 eqid 2189 . . . . . . . 8  |-  ( -g `  R )  =  (
-g `  R )
223, 21, 4eqgabl 13267 . . . . . . 7  |-  ( ( R  e.  Abel  /\  S  C_  X )  ->  ( C E A  <->  ( C  e.  X  /\  A  e.  X  /\  ( A ( -g `  R
) C )  e.  S ) ) )
2310, 20, 22syl2an2r 595 . . . . . 6  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  -> 
( C E A  <-> 
( C  e.  X  /\  A  e.  X  /\  ( A ( -g `  R ) C )  e.  S ) ) )
248, 23mpbid 147 . . . . 5  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  -> 
( C  e.  X  /\  A  e.  X  /\  ( A ( -g `  R ) C )  e.  S ) )
2524simp2d 1012 . . . 4  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  ->  A  e.  X )
26 simprr 531 . . . . . 6  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  ->  B E D )
273, 21, 4eqgabl 13267 . . . . . . 7  |-  ( ( R  e.  Abel  /\  S  C_  X )  ->  ( B E D  <->  ( B  e.  X  /\  D  e.  X  /\  ( D ( -g `  R
) B )  e.  S ) ) )
2810, 20, 27syl2an2r 595 . . . . . 6  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  -> 
( B E D  <-> 
( B  e.  X  /\  D  e.  X  /\  ( D ( -g `  R ) B )  e.  S ) ) )
2926, 28mpbid 147 . . . . 5  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  -> 
( B  e.  X  /\  D  e.  X  /\  ( D ( -g `  R ) B )  e.  S ) )
3029simp1d 1011 . . . 4  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  ->  B  e.  X )
31 2idlcpblrng.t . . . . 5  |-  .x.  =  ( .r `  R )
323, 31rngcl 13298 . . . 4  |-  ( ( R  e. Rng  /\  A  e.  X  /\  B  e.  X )  ->  ( A  .x.  B )  e.  X )
331, 25, 30, 32syl3anc 1249 . . 3  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  -> 
( A  .x.  B
)  e.  X )
3424simp1d 1011 . . . 4  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  ->  C  e.  X )
3529simp2d 1012 . . . 4  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  ->  D  e.  X )
363, 31rngcl 13298 . . . 4  |-  ( ( R  e. Rng  /\  C  e.  X  /\  D  e.  X )  ->  ( C  .x.  D )  e.  X )
371, 34, 35, 36syl3anc 1249 . . 3  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  -> 
( C  .x.  D
)  e.  X )
38 rnggrp 13292 . . . . . . 7  |-  ( R  e. Rng  ->  R  e.  Grp )
39383ad2ant1 1020 . . . . . 6  |-  ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R )
)  ->  R  e.  Grp )
4039adantr 276 . . . . 5  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  ->  R  e.  Grp )
413, 31rngcl 13298 . . . . . 6  |-  ( ( R  e. Rng  /\  C  e.  X  /\  B  e.  X )  ->  ( C  .x.  B )  e.  X )
421, 34, 30, 41syl3anc 1249 . . . . 5  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  -> 
( C  .x.  B
)  e.  X )
433, 21grpnnncan2 13041 . . . . 5  |-  ( ( R  e.  Grp  /\  ( ( C  .x.  D )  e.  X  /\  ( A  .x.  B
)  e.  X  /\  ( C  .x.  B )  e.  X ) )  ->  ( ( ( C  .x.  D ) ( -g `  R
) ( C  .x.  B ) ) (
-g `  R )
( ( A  .x.  B ) ( -g `  R ) ( C 
.x.  B ) ) )  =  ( ( C  .x.  D ) ( -g `  R
) ( A  .x.  B ) ) )
4440, 37, 33, 42, 43syl13anc 1251 . . . 4  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  -> 
( ( ( C 
.x.  D ) (
-g `  R )
( C  .x.  B
) ) ( -g `  R ) ( ( A  .x.  B ) ( -g `  R
) ( C  .x.  B ) ) )  =  ( ( C 
.x.  D ) (
-g `  R )
( A  .x.  B
) ) )
453, 31, 21, 1, 34, 35, 30rngsubdi 13305 . . . . . 6  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  -> 
( C  .x.  ( D ( -g `  R
) B ) )  =  ( ( C 
.x.  D ) (
-g `  R )
( C  .x.  B
) ) )
46 eqid 2189 . . . . . . . . . 10  |-  ( 0g
`  R )  =  ( 0g `  R
)
4746subg0cl 13121 . . . . . . . . 9  |-  ( S  e.  (SubGrp `  R
)  ->  ( 0g `  R )  e.  S
)
48473ad2ant3 1022 . . . . . . . 8  |-  ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R )
)  ->  ( 0g `  R )  e.  S
)
4948adantr 276 . . . . . . 7  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  -> 
( 0g `  R
)  e.  S )
5029simp3d 1013 . . . . . . 7  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  -> 
( D ( -g `  R ) B )  e.  S )
5146, 3, 31, 11rnglidlmcl 13796 . . . . . . 7  |-  ( ( ( R  e. Rng  /\  S  e.  (LIdeal `  R
)  /\  ( 0g `  R )  e.  S
)  /\  ( C  e.  X  /\  ( D ( -g `  R
) B )  e.  S ) )  -> 
( C  .x.  ( D ( -g `  R
) B ) )  e.  S )
521, 18, 49, 34, 50, 51syl32anc 1257 . . . . . 6  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  -> 
( C  .x.  ( D ( -g `  R
) B ) )  e.  S )
5345, 52eqeltrrd 2267 . . . . 5  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  -> 
( ( C  .x.  D ) ( -g `  R ) ( C 
.x.  B ) )  e.  S )
543, 21grpsubcl 13024 . . . . . . . . 9  |-  ( ( R  e.  Grp  /\  A  e.  X  /\  C  e.  X )  ->  ( A ( -g `  R ) C )  e.  X )
5540, 25, 34, 54syl3anc 1249 . . . . . . . 8  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  -> 
( A ( -g `  R ) C )  e.  X )
56 eqid 2189 . . . . . . . . 9  |-  ( .r
`  (oppr
`  R ) )  =  ( .r `  (oppr `  R ) )
573, 31, 12, 56opprmulg 13421 . . . . . . . 8  |-  ( ( R  e. Rng  /\  B  e.  X  /\  ( A ( -g `  R
) C )  e.  X )  ->  ( B ( .r `  (oppr `  R ) ) ( A ( -g `  R
) C ) )  =  ( ( A ( -g `  R
) C )  .x.  B ) )
581, 30, 55, 57syl3anc 1249 . . . . . . 7  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  -> 
( B ( .r
`  (oppr
`  R ) ) ( A ( -g `  R ) C ) )  =  ( ( A ( -g `  R
) C )  .x.  B ) )
593, 31, 21, 1, 25, 34, 30rngsubdir 13306 . . . . . . 7  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  -> 
( ( A (
-g `  R ) C )  .x.  B
)  =  ( ( A  .x.  B ) ( -g `  R
) ( C  .x.  B ) ) )
6058, 59eqtrd 2222 . . . . . 6  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  -> 
( B ( .r
`  (oppr
`  R ) ) ( A ( -g `  R ) C ) )  =  ( ( A  .x.  B ) ( -g `  R
) ( C  .x.  B ) ) )
6112opprrng 13427 . . . . . . . . 9  |-  ( R  e. Rng  ->  (oppr
`  R )  e. Rng )
62613ad2ant1 1020 . . . . . . . 8  |-  ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R )
)  ->  (oppr
`  R )  e. Rng )
6362adantr 276 . . . . . . 7  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  -> 
(oppr `  R )  e. Rng )
6415simprbi 275 . . . . . . . . 9  |-  ( S  e.  I  ->  S  e.  (LIdeal `  (oppr
`  R ) ) )
65643ad2ant2 1021 . . . . . . . 8  |-  ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R )
)  ->  S  e.  (LIdeal `  (oppr
`  R ) ) )
6665adantr 276 . . . . . . 7  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  ->  S  e.  (LIdeal `  (oppr `  R
) ) )
6712, 46oppr0g 13431 . . . . . . . . 9  |-  ( R  e. Rng  ->  ( 0g `  R )  =  ( 0g `  (oppr `  R
) ) )
681, 67syl 14 . . . . . . . 8  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  -> 
( 0g `  R
)  =  ( 0g
`  (oppr
`  R ) ) )
6968, 49eqeltrrd 2267 . . . . . . 7  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  -> 
( 0g `  (oppr `  R
) )  e.  S
)
7012, 3opprbasg 13425 . . . . . . . . 9  |-  ( R  e. Rng  ->  X  =  (
Base `  (oppr
`  R ) ) )
711, 70syl 14 . . . . . . . 8  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  ->  X  =  ( Base `  (oppr
`  R ) ) )
7230, 71eleqtrd 2268 . . . . . . 7  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  ->  B  e.  ( Base `  (oppr
`  R ) ) )
7324simp3d 1013 . . . . . . 7  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  -> 
( A ( -g `  R ) C )  e.  S )
74 eqid 2189 . . . . . . . 8  |-  ( 0g
`  (oppr
`  R ) )  =  ( 0g `  (oppr `  R ) )
75 eqid 2189 . . . . . . . 8  |-  ( Base `  (oppr
`  R ) )  =  ( Base `  (oppr `  R
) )
7674, 75, 56, 13rnglidlmcl 13796 . . . . . . 7  |-  ( ( ( (oppr
`  R )  e. Rng  /\  S  e.  (LIdeal `  (oppr
`  R ) )  /\  ( 0g `  (oppr `  R ) )  e.  S )  /\  ( B  e.  ( Base `  (oppr
`  R ) )  /\  ( A (
-g `  R ) C )  e.  S
) )  ->  ( B ( .r `  (oppr `  R ) ) ( A ( -g `  R
) C ) )  e.  S )
7763, 66, 69, 72, 73, 76syl32anc 1257 . . . . . 6  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  -> 
( B ( .r
`  (oppr
`  R ) ) ( A ( -g `  R ) C ) )  e.  S )
7860, 77eqeltrrd 2267 . . . . 5  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  -> 
( ( A  .x.  B ) ( -g `  R ) ( C 
.x.  B ) )  e.  S )
7921subgsubcl 13124 . . . . 5  |-  ( ( S  e.  (SubGrp `  R )  /\  (
( C  .x.  D
) ( -g `  R
) ( C  .x.  B ) )  e.  S  /\  ( ( A  .x.  B ) ( -g `  R
) ( C  .x.  B ) )  e.  S )  ->  (
( ( C  .x.  D ) ( -g `  R ) ( C 
.x.  B ) ) ( -g `  R
) ( ( A 
.x.  B ) (
-g `  R )
( C  .x.  B
) ) )  e.  S )
802, 53, 78, 79syl3anc 1249 . . . 4  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  -> 
( ( ( C 
.x.  D ) (
-g `  R )
( C  .x.  B
) ) ( -g `  R ) ( ( A  .x.  B ) ( -g `  R
) ( C  .x.  B ) ) )  e.  S )
8144, 80eqeltrrd 2267 . . 3  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  -> 
( ( C  .x.  D ) ( -g `  R ) ( A 
.x.  B ) )  e.  S )
823, 21, 4eqgabl 13267 . . . 4  |-  ( ( R  e.  Abel  /\  S  C_  X )  ->  (
( A  .x.  B
) E ( C 
.x.  D )  <->  ( ( A  .x.  B )  e.  X  /\  ( C 
.x.  D )  e.  X  /\  ( ( C  .x.  D ) ( -g `  R
) ( A  .x.  B ) )  e.  S ) ) )
8310, 20, 82syl2an2r 595 . . 3  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  -> 
( ( A  .x.  B ) E ( C  .x.  D )  <-> 
( ( A  .x.  B )  e.  X  /\  ( C  .x.  D
)  e.  X  /\  ( ( C  .x.  D ) ( -g `  R ) ( A 
.x.  B ) )  e.  S ) ) )
8433, 37, 81, 83mpbir3and 1182 . 2  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  -> 
( A  .x.  B
) E ( C 
.x.  D ) )
8584ex 115 1  |-  ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R )
)  ->  ( ( A E C  /\  B E D )  ->  ( A  .x.  B ) E ( C  .x.  D
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2160    C_ wss 3144   class class class wbr 4018   ` cfv 5235  (class class class)co 5896    Er wer 6556   Basecbs 12512   .rcmulr 12590   0gc0g 12761   Grpcgrp 12945   -gcsg 12947  SubGrpcsubg 13106   ~QG cqg 13108   Abelcabl 13224  Rngcrng 13286  opprcoppr 13417  LIdealclidl 13783  2Idealc2idl 13815
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7932  ax-resscn 7933  ax-1cn 7934  ax-1re 7935  ax-icn 7936  ax-addcl 7937  ax-addrcl 7938  ax-mulcl 7939  ax-addcom 7941  ax-addass 7943  ax-i2m1 7946  ax-0lt1 7947  ax-0id 7949  ax-rnegex 7950  ax-pre-ltirr 7953  ax-pre-lttrn 7955  ax-pre-ltadd 7957
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-riota 5852  df-ov 5899  df-oprab 5900  df-mpo 5901  df-1st 6165  df-2nd 6166  df-tpos 6270  df-er 6559  df-pnf 8024  df-mnf 8025  df-ltxr 8027  df-inn 8950  df-2 9008  df-3 9009  df-4 9010  df-5 9011  df-6 9012  df-7 9013  df-8 9014  df-ndx 12515  df-slot 12516  df-base 12518  df-sets 12519  df-iress 12520  df-plusg 12602  df-mulr 12603  df-sca 12605  df-vsca 12606  df-ip 12607  df-0g 12763  df-mgm 12832  df-sgrp 12865  df-mnd 12878  df-grp 12948  df-minusg 12949  df-sbg 12950  df-subg 13109  df-eqg 13111  df-cmn 13225  df-abl 13226  df-mgp 13275  df-rng 13287  df-oppr 13418  df-lssm 13669  df-sra 13751  df-rgmod 13752  df-lidl 13785  df-2idl 13816
This theorem is referenced by:  2idlcpbl  13839  qus2idrng  13840  qusmulrng  13846
  Copyright terms: Public domain W3C validator