ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2idlcpblrng Unicode version

Theorem 2idlcpblrng 14452
Description: The coset equivalence relation for a two-sided ideal is compatible with ring multiplication. (Contributed by Mario Carneiro, 14-Jun-2015.) Generalization for non-unital rings and two-sided ideals which are subgroups of the additive group of the non-unital ring. (Revised by AV, 23-Feb-2025.)
Hypotheses
Ref Expression
2idlcpblrng.x  |-  X  =  ( Base `  R
)
2idlcpblrng.r  |-  E  =  ( R ~QG  S )
2idlcpblrng.i  |-  I  =  (2Ideal `  R )
2idlcpblrng.t  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
2idlcpblrng  |-  ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R )
)  ->  ( ( A E C  /\  B E D )  ->  ( A  .x.  B ) E ( C  .x.  D
) ) )

Proof of Theorem 2idlcpblrng
StepHypRef Expression
1 simpl1 1005 . . . 4  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  ->  R  e. Rng )
2 simpl3 1007 . . . . . . . 8  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  ->  S  e.  (SubGrp `  R
) )
3 2idlcpblrng.x . . . . . . . . 9  |-  X  =  ( Base `  R
)
4 2idlcpblrng.r . . . . . . . . 9  |-  E  =  ( R ~QG  S )
53, 4eqger 13727 . . . . . . . 8  |-  ( S  e.  (SubGrp `  R
)  ->  E  Er  X )
62, 5syl 14 . . . . . . 7  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  ->  E  Er  X )
7 simprl 529 . . . . . . 7  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  ->  A E C )
86, 7ersym 6662 . . . . . 6  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  ->  C E A )
9 rngabl 13864 . . . . . . . 8  |-  ( R  e. Rng  ->  R  e.  Abel )
1093ad2ant1 1023 . . . . . . 7  |-  ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R )
)  ->  R  e.  Abel )
11 eqid 2209 . . . . . . . . . . . 12  |-  (LIdeal `  R )  =  (LIdeal `  R )
12 eqid 2209 . . . . . . . . . . . 12  |-  (oppr `  R
)  =  (oppr `  R
)
13 eqid 2209 . . . . . . . . . . . 12  |-  (LIdeal `  (oppr `  R ) )  =  (LIdeal `  (oppr
`  R ) )
14 2idlcpblrng.i . . . . . . . . . . . 12  |-  I  =  (2Ideal `  R )
1511, 12, 13, 142idlelb 14434 . . . . . . . . . . 11  |-  ( S  e.  I  <->  ( S  e.  (LIdeal `  R )  /\  S  e.  (LIdeal `  (oppr
`  R ) ) ) )
1615simplbi 274 . . . . . . . . . 10  |-  ( S  e.  I  ->  S  e.  (LIdeal `  R )
)
17163ad2ant2 1024 . . . . . . . . 9  |-  ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R )
)  ->  S  e.  (LIdeal `  R ) )
1817adantr 276 . . . . . . . 8  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  ->  S  e.  (LIdeal `  R
) )
193, 11lidlss 14405 . . . . . . . 8  |-  ( S  e.  (LIdeal `  R
)  ->  S  C_  X
)
2018, 19syl 14 . . . . . . 7  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  ->  S  C_  X )
21 eqid 2209 . . . . . . . 8  |-  ( -g `  R )  =  (
-g `  R )
223, 21, 4eqgabl 13833 . . . . . . 7  |-  ( ( R  e.  Abel  /\  S  C_  X )  ->  ( C E A  <->  ( C  e.  X  /\  A  e.  X  /\  ( A ( -g `  R
) C )  e.  S ) ) )
2310, 20, 22syl2an2r 597 . . . . . 6  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  -> 
( C E A  <-> 
( C  e.  X  /\  A  e.  X  /\  ( A ( -g `  R ) C )  e.  S ) ) )
248, 23mpbid 147 . . . . 5  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  -> 
( C  e.  X  /\  A  e.  X  /\  ( A ( -g `  R ) C )  e.  S ) )
2524simp2d 1015 . . . 4  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  ->  A  e.  X )
26 simprr 531 . . . . . 6  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  ->  B E D )
273, 21, 4eqgabl 13833 . . . . . . 7  |-  ( ( R  e.  Abel  /\  S  C_  X )  ->  ( B E D  <->  ( B  e.  X  /\  D  e.  X  /\  ( D ( -g `  R
) B )  e.  S ) ) )
2810, 20, 27syl2an2r 597 . . . . . 6  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  -> 
( B E D  <-> 
( B  e.  X  /\  D  e.  X  /\  ( D ( -g `  R ) B )  e.  S ) ) )
2926, 28mpbid 147 . . . . 5  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  -> 
( B  e.  X  /\  D  e.  X  /\  ( D ( -g `  R ) B )  e.  S ) )
3029simp1d 1014 . . . 4  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  ->  B  e.  X )
31 2idlcpblrng.t . . . . 5  |-  .x.  =  ( .r `  R )
323, 31rngcl 13873 . . . 4  |-  ( ( R  e. Rng  /\  A  e.  X  /\  B  e.  X )  ->  ( A  .x.  B )  e.  X )
331, 25, 30, 32syl3anc 1252 . . 3  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  -> 
( A  .x.  B
)  e.  X )
3424simp1d 1014 . . . 4  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  ->  C  e.  X )
3529simp2d 1015 . . . 4  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  ->  D  e.  X )
363, 31rngcl 13873 . . . 4  |-  ( ( R  e. Rng  /\  C  e.  X  /\  D  e.  X )  ->  ( C  .x.  D )  e.  X )
371, 34, 35, 36syl3anc 1252 . . 3  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  -> 
( C  .x.  D
)  e.  X )
38 rnggrp 13867 . . . . . . 7  |-  ( R  e. Rng  ->  R  e.  Grp )
39383ad2ant1 1023 . . . . . 6  |-  ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R )
)  ->  R  e.  Grp )
4039adantr 276 . . . . 5  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  ->  R  e.  Grp )
413, 31rngcl 13873 . . . . . 6  |-  ( ( R  e. Rng  /\  C  e.  X  /\  B  e.  X )  ->  ( C  .x.  B )  e.  X )
421, 34, 30, 41syl3anc 1252 . . . . 5  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  -> 
( C  .x.  B
)  e.  X )
433, 21grpnnncan2 13596 . . . . 5  |-  ( ( R  e.  Grp  /\  ( ( C  .x.  D )  e.  X  /\  ( A  .x.  B
)  e.  X  /\  ( C  .x.  B )  e.  X ) )  ->  ( ( ( C  .x.  D ) ( -g `  R
) ( C  .x.  B ) ) (
-g `  R )
( ( A  .x.  B ) ( -g `  R ) ( C 
.x.  B ) ) )  =  ( ( C  .x.  D ) ( -g `  R
) ( A  .x.  B ) ) )
4440, 37, 33, 42, 43syl13anc 1254 . . . 4  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  -> 
( ( ( C 
.x.  D ) (
-g `  R )
( C  .x.  B
) ) ( -g `  R ) ( ( A  .x.  B ) ( -g `  R
) ( C  .x.  B ) ) )  =  ( ( C 
.x.  D ) (
-g `  R )
( A  .x.  B
) ) )
453, 31, 21, 1, 34, 35, 30rngsubdi 13880 . . . . . 6  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  -> 
( C  .x.  ( D ( -g `  R
) B ) )  =  ( ( C 
.x.  D ) (
-g `  R )
( C  .x.  B
) ) )
46 eqid 2209 . . . . . . . . . 10  |-  ( 0g
`  R )  =  ( 0g `  R
)
4746subg0cl 13685 . . . . . . . . 9  |-  ( S  e.  (SubGrp `  R
)  ->  ( 0g `  R )  e.  S
)
48473ad2ant3 1025 . . . . . . . 8  |-  ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R )
)  ->  ( 0g `  R )  e.  S
)
4948adantr 276 . . . . . . 7  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  -> 
( 0g `  R
)  e.  S )
5029simp3d 1016 . . . . . . 7  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  -> 
( D ( -g `  R ) B )  e.  S )
5146, 3, 31, 11rnglidlmcl 14409 . . . . . . 7  |-  ( ( ( R  e. Rng  /\  S  e.  (LIdeal `  R
)  /\  ( 0g `  R )  e.  S
)  /\  ( C  e.  X  /\  ( D ( -g `  R
) B )  e.  S ) )  -> 
( C  .x.  ( D ( -g `  R
) B ) )  e.  S )
521, 18, 49, 34, 50, 51syl32anc 1260 . . . . . 6  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  -> 
( C  .x.  ( D ( -g `  R
) B ) )  e.  S )
5345, 52eqeltrrd 2287 . . . . 5  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  -> 
( ( C  .x.  D ) ( -g `  R ) ( C 
.x.  B ) )  e.  S )
543, 21grpsubcl 13579 . . . . . . . . 9  |-  ( ( R  e.  Grp  /\  A  e.  X  /\  C  e.  X )  ->  ( A ( -g `  R ) C )  e.  X )
5540, 25, 34, 54syl3anc 1252 . . . . . . . 8  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  -> 
( A ( -g `  R ) C )  e.  X )
56 eqid 2209 . . . . . . . . 9  |-  ( .r
`  (oppr
`  R ) )  =  ( .r `  (oppr `  R ) )
573, 31, 12, 56opprmulg 14000 . . . . . . . 8  |-  ( ( R  e. Rng  /\  B  e.  X  /\  ( A ( -g `  R
) C )  e.  X )  ->  ( B ( .r `  (oppr `  R ) ) ( A ( -g `  R
) C ) )  =  ( ( A ( -g `  R
) C )  .x.  B ) )
581, 30, 55, 57syl3anc 1252 . . . . . . 7  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  -> 
( B ( .r
`  (oppr
`  R ) ) ( A ( -g `  R ) C ) )  =  ( ( A ( -g `  R
) C )  .x.  B ) )
593, 31, 21, 1, 25, 34, 30rngsubdir 13881 . . . . . . 7  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  -> 
( ( A (
-g `  R ) C )  .x.  B
)  =  ( ( A  .x.  B ) ( -g `  R
) ( C  .x.  B ) ) )
6058, 59eqtrd 2242 . . . . . 6  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  -> 
( B ( .r
`  (oppr
`  R ) ) ( A ( -g `  R ) C ) )  =  ( ( A  .x.  B ) ( -g `  R
) ( C  .x.  B ) ) )
6112opprrng 14006 . . . . . . . . 9  |-  ( R  e. Rng  ->  (oppr
`  R )  e. Rng )
62613ad2ant1 1023 . . . . . . . 8  |-  ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R )
)  ->  (oppr
`  R )  e. Rng )
6362adantr 276 . . . . . . 7  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  -> 
(oppr `  R )  e. Rng )
6415simprbi 275 . . . . . . . . 9  |-  ( S  e.  I  ->  S  e.  (LIdeal `  (oppr
`  R ) ) )
65643ad2ant2 1024 . . . . . . . 8  |-  ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R )
)  ->  S  e.  (LIdeal `  (oppr
`  R ) ) )
6665adantr 276 . . . . . . 7  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  ->  S  e.  (LIdeal `  (oppr `  R
) ) )
6712, 46oppr0g 14010 . . . . . . . . 9  |-  ( R  e. Rng  ->  ( 0g `  R )  =  ( 0g `  (oppr `  R
) ) )
681, 67syl 14 . . . . . . . 8  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  -> 
( 0g `  R
)  =  ( 0g
`  (oppr
`  R ) ) )
6968, 49eqeltrrd 2287 . . . . . . 7  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  -> 
( 0g `  (oppr `  R
) )  e.  S
)
7012, 3opprbasg 14004 . . . . . . . . 9  |-  ( R  e. Rng  ->  X  =  (
Base `  (oppr
`  R ) ) )
711, 70syl 14 . . . . . . . 8  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  ->  X  =  ( Base `  (oppr
`  R ) ) )
7230, 71eleqtrd 2288 . . . . . . 7  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  ->  B  e.  ( Base `  (oppr
`  R ) ) )
7324simp3d 1016 . . . . . . 7  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  -> 
( A ( -g `  R ) C )  e.  S )
74 eqid 2209 . . . . . . . 8  |-  ( 0g
`  (oppr
`  R ) )  =  ( 0g `  (oppr `  R ) )
75 eqid 2209 . . . . . . . 8  |-  ( Base `  (oppr
`  R ) )  =  ( Base `  (oppr `  R
) )
7674, 75, 56, 13rnglidlmcl 14409 . . . . . . 7  |-  ( ( ( (oppr
`  R )  e. Rng  /\  S  e.  (LIdeal `  (oppr
`  R ) )  /\  ( 0g `  (oppr `  R ) )  e.  S )  /\  ( B  e.  ( Base `  (oppr
`  R ) )  /\  ( A (
-g `  R ) C )  e.  S
) )  ->  ( B ( .r `  (oppr `  R ) ) ( A ( -g `  R
) C ) )  e.  S )
7763, 66, 69, 72, 73, 76syl32anc 1260 . . . . . 6  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  -> 
( B ( .r
`  (oppr
`  R ) ) ( A ( -g `  R ) C ) )  e.  S )
7860, 77eqeltrrd 2287 . . . . 5  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  -> 
( ( A  .x.  B ) ( -g `  R ) ( C 
.x.  B ) )  e.  S )
7921subgsubcl 13688 . . . . 5  |-  ( ( S  e.  (SubGrp `  R )  /\  (
( C  .x.  D
) ( -g `  R
) ( C  .x.  B ) )  e.  S  /\  ( ( A  .x.  B ) ( -g `  R
) ( C  .x.  B ) )  e.  S )  ->  (
( ( C  .x.  D ) ( -g `  R ) ( C 
.x.  B ) ) ( -g `  R
) ( ( A 
.x.  B ) (
-g `  R )
( C  .x.  B
) ) )  e.  S )
802, 53, 78, 79syl3anc 1252 . . . 4  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  -> 
( ( ( C 
.x.  D ) (
-g `  R )
( C  .x.  B
) ) ( -g `  R ) ( ( A  .x.  B ) ( -g `  R
) ( C  .x.  B ) ) )  e.  S )
8144, 80eqeltrrd 2287 . . 3  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  -> 
( ( C  .x.  D ) ( -g `  R ) ( A 
.x.  B ) )  e.  S )
823, 21, 4eqgabl 13833 . . . 4  |-  ( ( R  e.  Abel  /\  S  C_  X )  ->  (
( A  .x.  B
) E ( C 
.x.  D )  <->  ( ( A  .x.  B )  e.  X  /\  ( C 
.x.  D )  e.  X  /\  ( ( C  .x.  D ) ( -g `  R
) ( A  .x.  B ) )  e.  S ) ) )
8310, 20, 82syl2an2r 597 . . 3  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  -> 
( ( A  .x.  B ) E ( C  .x.  D )  <-> 
( ( A  .x.  B )  e.  X  /\  ( C  .x.  D
)  e.  X  /\  ( ( C  .x.  D ) ( -g `  R ) ( A 
.x.  B ) )  e.  S ) ) )
8433, 37, 81, 83mpbir3and 1185 . 2  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  -> 
( A  .x.  B
) E ( C 
.x.  D ) )
8584ex 115 1  |-  ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R )
)  ->  ( ( A E C  /\  B E D )  ->  ( A  .x.  B ) E ( C  .x.  D
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 983    = wceq 1375    e. wcel 2180    C_ wss 3177   class class class wbr 4062   ` cfv 5294  (class class class)co 5974    Er wer 6647   Basecbs 12998   .rcmulr 13077   0gc0g 13255   Grpcgrp 13499   -gcsg 13501  SubGrpcsubg 13670   ~QG cqg 13672   Abelcabl 13788  Rngcrng 13861  opprcoppr 13996  LIdealclidl 14396  2Idealc2idl 14428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-addcom 8067  ax-addass 8069  ax-i2m1 8072  ax-0lt1 8073  ax-0id 8075  ax-rnegex 8076  ax-pre-ltirr 8079  ax-pre-lttrn 8081  ax-pre-ltadd 8083
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-tpos 6361  df-er 6650  df-pnf 8151  df-mnf 8152  df-ltxr 8154  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-5 9140  df-6 9141  df-7 9142  df-8 9143  df-ndx 13001  df-slot 13002  df-base 13004  df-sets 13005  df-iress 13006  df-plusg 13089  df-mulr 13090  df-sca 13092  df-vsca 13093  df-ip 13094  df-0g 13257  df-mgm 13355  df-sgrp 13401  df-mnd 13416  df-grp 13502  df-minusg 13503  df-sbg 13504  df-subg 13673  df-eqg 13675  df-cmn 13789  df-abl 13790  df-mgp 13850  df-rng 13862  df-oppr 13997  df-lssm 14282  df-sra 14364  df-rgmod 14365  df-lidl 14398  df-2idl 14429
This theorem is referenced by:  2idlcpbl  14453  qus2idrng  14454  qusmulrng  14461
  Copyright terms: Public domain W3C validator