ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2idlcpblrng Unicode version

Theorem 2idlcpblrng 14329
Description: The coset equivalence relation for a two-sided ideal is compatible with ring multiplication. (Contributed by Mario Carneiro, 14-Jun-2015.) Generalization for non-unital rings and two-sided ideals which are subgroups of the additive group of the non-unital ring. (Revised by AV, 23-Feb-2025.)
Hypotheses
Ref Expression
2idlcpblrng.x  |-  X  =  ( Base `  R
)
2idlcpblrng.r  |-  E  =  ( R ~QG  S )
2idlcpblrng.i  |-  I  =  (2Ideal `  R )
2idlcpblrng.t  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
2idlcpblrng  |-  ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R )
)  ->  ( ( A E C  /\  B E D )  ->  ( A  .x.  B ) E ( C  .x.  D
) ) )

Proof of Theorem 2idlcpblrng
StepHypRef Expression
1 simpl1 1003 . . . 4  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  ->  R  e. Rng )
2 simpl3 1005 . . . . . . . 8  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  ->  S  e.  (SubGrp `  R
) )
3 2idlcpblrng.x . . . . . . . . 9  |-  X  =  ( Base `  R
)
4 2idlcpblrng.r . . . . . . . . 9  |-  E  =  ( R ~QG  S )
53, 4eqger 13604 . . . . . . . 8  |-  ( S  e.  (SubGrp `  R
)  ->  E  Er  X )
62, 5syl 14 . . . . . . 7  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  ->  E  Er  X )
7 simprl 529 . . . . . . 7  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  ->  A E C )
86, 7ersym 6639 . . . . . 6  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  ->  C E A )
9 rngabl 13741 . . . . . . . 8  |-  ( R  e. Rng  ->  R  e.  Abel )
1093ad2ant1 1021 . . . . . . 7  |-  ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R )
)  ->  R  e.  Abel )
11 eqid 2206 . . . . . . . . . . . 12  |-  (LIdeal `  R )  =  (LIdeal `  R )
12 eqid 2206 . . . . . . . . . . . 12  |-  (oppr `  R
)  =  (oppr `  R
)
13 eqid 2206 . . . . . . . . . . . 12  |-  (LIdeal `  (oppr `  R ) )  =  (LIdeal `  (oppr
`  R ) )
14 2idlcpblrng.i . . . . . . . . . . . 12  |-  I  =  (2Ideal `  R )
1511, 12, 13, 142idlelb 14311 . . . . . . . . . . 11  |-  ( S  e.  I  <->  ( S  e.  (LIdeal `  R )  /\  S  e.  (LIdeal `  (oppr
`  R ) ) ) )
1615simplbi 274 . . . . . . . . . 10  |-  ( S  e.  I  ->  S  e.  (LIdeal `  R )
)
17163ad2ant2 1022 . . . . . . . . 9  |-  ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R )
)  ->  S  e.  (LIdeal `  R ) )
1817adantr 276 . . . . . . . 8  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  ->  S  e.  (LIdeal `  R
) )
193, 11lidlss 14282 . . . . . . . 8  |-  ( S  e.  (LIdeal `  R
)  ->  S  C_  X
)
2018, 19syl 14 . . . . . . 7  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  ->  S  C_  X )
21 eqid 2206 . . . . . . . 8  |-  ( -g `  R )  =  (
-g `  R )
223, 21, 4eqgabl 13710 . . . . . . 7  |-  ( ( R  e.  Abel  /\  S  C_  X )  ->  ( C E A  <->  ( C  e.  X  /\  A  e.  X  /\  ( A ( -g `  R
) C )  e.  S ) ) )
2310, 20, 22syl2an2r 595 . . . . . 6  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  -> 
( C E A  <-> 
( C  e.  X  /\  A  e.  X  /\  ( A ( -g `  R ) C )  e.  S ) ) )
248, 23mpbid 147 . . . . 5  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  -> 
( C  e.  X  /\  A  e.  X  /\  ( A ( -g `  R ) C )  e.  S ) )
2524simp2d 1013 . . . 4  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  ->  A  e.  X )
26 simprr 531 . . . . . 6  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  ->  B E D )
273, 21, 4eqgabl 13710 . . . . . . 7  |-  ( ( R  e.  Abel  /\  S  C_  X )  ->  ( B E D  <->  ( B  e.  X  /\  D  e.  X  /\  ( D ( -g `  R
) B )  e.  S ) ) )
2810, 20, 27syl2an2r 595 . . . . . 6  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  -> 
( B E D  <-> 
( B  e.  X  /\  D  e.  X  /\  ( D ( -g `  R ) B )  e.  S ) ) )
2926, 28mpbid 147 . . . . 5  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  -> 
( B  e.  X  /\  D  e.  X  /\  ( D ( -g `  R ) B )  e.  S ) )
3029simp1d 1012 . . . 4  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  ->  B  e.  X )
31 2idlcpblrng.t . . . . 5  |-  .x.  =  ( .r `  R )
323, 31rngcl 13750 . . . 4  |-  ( ( R  e. Rng  /\  A  e.  X  /\  B  e.  X )  ->  ( A  .x.  B )  e.  X )
331, 25, 30, 32syl3anc 1250 . . 3  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  -> 
( A  .x.  B
)  e.  X )
3424simp1d 1012 . . . 4  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  ->  C  e.  X )
3529simp2d 1013 . . . 4  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  ->  D  e.  X )
363, 31rngcl 13750 . . . 4  |-  ( ( R  e. Rng  /\  C  e.  X  /\  D  e.  X )  ->  ( C  .x.  D )  e.  X )
371, 34, 35, 36syl3anc 1250 . . 3  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  -> 
( C  .x.  D
)  e.  X )
38 rnggrp 13744 . . . . . . 7  |-  ( R  e. Rng  ->  R  e.  Grp )
39383ad2ant1 1021 . . . . . 6  |-  ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R )
)  ->  R  e.  Grp )
4039adantr 276 . . . . 5  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  ->  R  e.  Grp )
413, 31rngcl 13750 . . . . . 6  |-  ( ( R  e. Rng  /\  C  e.  X  /\  B  e.  X )  ->  ( C  .x.  B )  e.  X )
421, 34, 30, 41syl3anc 1250 . . . . 5  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  -> 
( C  .x.  B
)  e.  X )
433, 21grpnnncan2 13473 . . . . 5  |-  ( ( R  e.  Grp  /\  ( ( C  .x.  D )  e.  X  /\  ( A  .x.  B
)  e.  X  /\  ( C  .x.  B )  e.  X ) )  ->  ( ( ( C  .x.  D ) ( -g `  R
) ( C  .x.  B ) ) (
-g `  R )
( ( A  .x.  B ) ( -g `  R ) ( C 
.x.  B ) ) )  =  ( ( C  .x.  D ) ( -g `  R
) ( A  .x.  B ) ) )
4440, 37, 33, 42, 43syl13anc 1252 . . . 4  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  -> 
( ( ( C 
.x.  D ) (
-g `  R )
( C  .x.  B
) ) ( -g `  R ) ( ( A  .x.  B ) ( -g `  R
) ( C  .x.  B ) ) )  =  ( ( C 
.x.  D ) (
-g `  R )
( A  .x.  B
) ) )
453, 31, 21, 1, 34, 35, 30rngsubdi 13757 . . . . . 6  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  -> 
( C  .x.  ( D ( -g `  R
) B ) )  =  ( ( C 
.x.  D ) (
-g `  R )
( C  .x.  B
) ) )
46 eqid 2206 . . . . . . . . . 10  |-  ( 0g
`  R )  =  ( 0g `  R
)
4746subg0cl 13562 . . . . . . . . 9  |-  ( S  e.  (SubGrp `  R
)  ->  ( 0g `  R )  e.  S
)
48473ad2ant3 1023 . . . . . . . 8  |-  ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R )
)  ->  ( 0g `  R )  e.  S
)
4948adantr 276 . . . . . . 7  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  -> 
( 0g `  R
)  e.  S )
5029simp3d 1014 . . . . . . 7  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  -> 
( D ( -g `  R ) B )  e.  S )
5146, 3, 31, 11rnglidlmcl 14286 . . . . . . 7  |-  ( ( ( R  e. Rng  /\  S  e.  (LIdeal `  R
)  /\  ( 0g `  R )  e.  S
)  /\  ( C  e.  X  /\  ( D ( -g `  R
) B )  e.  S ) )  -> 
( C  .x.  ( D ( -g `  R
) B ) )  e.  S )
521, 18, 49, 34, 50, 51syl32anc 1258 . . . . . 6  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  -> 
( C  .x.  ( D ( -g `  R
) B ) )  e.  S )
5345, 52eqeltrrd 2284 . . . . 5  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  -> 
( ( C  .x.  D ) ( -g `  R ) ( C 
.x.  B ) )  e.  S )
543, 21grpsubcl 13456 . . . . . . . . 9  |-  ( ( R  e.  Grp  /\  A  e.  X  /\  C  e.  X )  ->  ( A ( -g `  R ) C )  e.  X )
5540, 25, 34, 54syl3anc 1250 . . . . . . . 8  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  -> 
( A ( -g `  R ) C )  e.  X )
56 eqid 2206 . . . . . . . . 9  |-  ( .r
`  (oppr
`  R ) )  =  ( .r `  (oppr `  R ) )
573, 31, 12, 56opprmulg 13877 . . . . . . . 8  |-  ( ( R  e. Rng  /\  B  e.  X  /\  ( A ( -g `  R
) C )  e.  X )  ->  ( B ( .r `  (oppr `  R ) ) ( A ( -g `  R
) C ) )  =  ( ( A ( -g `  R
) C )  .x.  B ) )
581, 30, 55, 57syl3anc 1250 . . . . . . 7  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  -> 
( B ( .r
`  (oppr
`  R ) ) ( A ( -g `  R ) C ) )  =  ( ( A ( -g `  R
) C )  .x.  B ) )
593, 31, 21, 1, 25, 34, 30rngsubdir 13758 . . . . . . 7  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  -> 
( ( A (
-g `  R ) C )  .x.  B
)  =  ( ( A  .x.  B ) ( -g `  R
) ( C  .x.  B ) ) )
6058, 59eqtrd 2239 . . . . . 6  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  -> 
( B ( .r
`  (oppr
`  R ) ) ( A ( -g `  R ) C ) )  =  ( ( A  .x.  B ) ( -g `  R
) ( C  .x.  B ) ) )
6112opprrng 13883 . . . . . . . . 9  |-  ( R  e. Rng  ->  (oppr
`  R )  e. Rng )
62613ad2ant1 1021 . . . . . . . 8  |-  ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R )
)  ->  (oppr
`  R )  e. Rng )
6362adantr 276 . . . . . . 7  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  -> 
(oppr `  R )  e. Rng )
6415simprbi 275 . . . . . . . . 9  |-  ( S  e.  I  ->  S  e.  (LIdeal `  (oppr
`  R ) ) )
65643ad2ant2 1022 . . . . . . . 8  |-  ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R )
)  ->  S  e.  (LIdeal `  (oppr
`  R ) ) )
6665adantr 276 . . . . . . 7  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  ->  S  e.  (LIdeal `  (oppr `  R
) ) )
6712, 46oppr0g 13887 . . . . . . . . 9  |-  ( R  e. Rng  ->  ( 0g `  R )  =  ( 0g `  (oppr `  R
) ) )
681, 67syl 14 . . . . . . . 8  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  -> 
( 0g `  R
)  =  ( 0g
`  (oppr
`  R ) ) )
6968, 49eqeltrrd 2284 . . . . . . 7  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  -> 
( 0g `  (oppr `  R
) )  e.  S
)
7012, 3opprbasg 13881 . . . . . . . . 9  |-  ( R  e. Rng  ->  X  =  (
Base `  (oppr
`  R ) ) )
711, 70syl 14 . . . . . . . 8  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  ->  X  =  ( Base `  (oppr
`  R ) ) )
7230, 71eleqtrd 2285 . . . . . . 7  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  ->  B  e.  ( Base `  (oppr
`  R ) ) )
7324simp3d 1014 . . . . . . 7  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  -> 
( A ( -g `  R ) C )  e.  S )
74 eqid 2206 . . . . . . . 8  |-  ( 0g
`  (oppr
`  R ) )  =  ( 0g `  (oppr `  R ) )
75 eqid 2206 . . . . . . . 8  |-  ( Base `  (oppr
`  R ) )  =  ( Base `  (oppr `  R
) )
7674, 75, 56, 13rnglidlmcl 14286 . . . . . . 7  |-  ( ( ( (oppr
`  R )  e. Rng  /\  S  e.  (LIdeal `  (oppr
`  R ) )  /\  ( 0g `  (oppr `  R ) )  e.  S )  /\  ( B  e.  ( Base `  (oppr
`  R ) )  /\  ( A (
-g `  R ) C )  e.  S
) )  ->  ( B ( .r `  (oppr `  R ) ) ( A ( -g `  R
) C ) )  e.  S )
7763, 66, 69, 72, 73, 76syl32anc 1258 . . . . . 6  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  -> 
( B ( .r
`  (oppr
`  R ) ) ( A ( -g `  R ) C ) )  e.  S )
7860, 77eqeltrrd 2284 . . . . 5  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  -> 
( ( A  .x.  B ) ( -g `  R ) ( C 
.x.  B ) )  e.  S )
7921subgsubcl 13565 . . . . 5  |-  ( ( S  e.  (SubGrp `  R )  /\  (
( C  .x.  D
) ( -g `  R
) ( C  .x.  B ) )  e.  S  /\  ( ( A  .x.  B ) ( -g `  R
) ( C  .x.  B ) )  e.  S )  ->  (
( ( C  .x.  D ) ( -g `  R ) ( C 
.x.  B ) ) ( -g `  R
) ( ( A 
.x.  B ) (
-g `  R )
( C  .x.  B
) ) )  e.  S )
802, 53, 78, 79syl3anc 1250 . . . 4  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  -> 
( ( ( C 
.x.  D ) (
-g `  R )
( C  .x.  B
) ) ( -g `  R ) ( ( A  .x.  B ) ( -g `  R
) ( C  .x.  B ) ) )  e.  S )
8144, 80eqeltrrd 2284 . . 3  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  -> 
( ( C  .x.  D ) ( -g `  R ) ( A 
.x.  B ) )  e.  S )
823, 21, 4eqgabl 13710 . . . 4  |-  ( ( R  e.  Abel  /\  S  C_  X )  ->  (
( A  .x.  B
) E ( C 
.x.  D )  <->  ( ( A  .x.  B )  e.  X  /\  ( C 
.x.  D )  e.  X  /\  ( ( C  .x.  D ) ( -g `  R
) ( A  .x.  B ) )  e.  S ) ) )
8310, 20, 82syl2an2r 595 . . 3  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  -> 
( ( A  .x.  B ) E ( C  .x.  D )  <-> 
( ( A  .x.  B )  e.  X  /\  ( C  .x.  D
)  e.  X  /\  ( ( C  .x.  D ) ( -g `  R ) ( A 
.x.  B ) )  e.  S ) ) )
8433, 37, 81, 83mpbir3and 1183 . 2  |-  ( ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R
) )  /\  ( A E C  /\  B E D ) )  -> 
( A  .x.  B
) E ( C 
.x.  D ) )
8584ex 115 1  |-  ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R )
)  ->  ( ( A E C  /\  B E D )  ->  ( A  .x.  B ) E ( C  .x.  D
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2177    C_ wss 3167   class class class wbr 4047   ` cfv 5276  (class class class)co 5951    Er wer 6624   Basecbs 12876   .rcmulr 12954   0gc0g 13132   Grpcgrp 13376   -gcsg 13378  SubGrpcsubg 13547   ~QG cqg 13549   Abelcabl 13665  Rngcrng 13738  opprcoppr 13873  LIdealclidl 14273  2Idealc2idl 14305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-addcom 8032  ax-addass 8034  ax-i2m1 8037  ax-0lt1 8038  ax-0id 8040  ax-rnegex 8041  ax-pre-ltirr 8044  ax-pre-lttrn 8046  ax-pre-ltadd 8048
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-tpos 6338  df-er 6627  df-pnf 8116  df-mnf 8117  df-ltxr 8119  df-inn 9044  df-2 9102  df-3 9103  df-4 9104  df-5 9105  df-6 9106  df-7 9107  df-8 9108  df-ndx 12879  df-slot 12880  df-base 12882  df-sets 12883  df-iress 12884  df-plusg 12966  df-mulr 12967  df-sca 12969  df-vsca 12970  df-ip 12971  df-0g 13134  df-mgm 13232  df-sgrp 13278  df-mnd 13293  df-grp 13379  df-minusg 13380  df-sbg 13381  df-subg 13550  df-eqg 13552  df-cmn 13666  df-abl 13667  df-mgp 13727  df-rng 13739  df-oppr 13874  df-lssm 14159  df-sra 14241  df-rgmod 14242  df-lidl 14275  df-2idl 14306
This theorem is referenced by:  2idlcpbl  14330  qus2idrng  14331  qusmulrng  14338
  Copyright terms: Public domain W3C validator