Proof of Theorem 2idlcpblrng
| Step | Hyp | Ref
 | Expression | 
| 1 |   | simpl1 1002 | 
. . . 4
         Rng      
       
 SubGrp                         
Rng  | 
| 2 |   | simpl3 1004 | 
. . . . . . . 8
         Rng      
       
 SubGrp                         
 SubGrp     | 
| 3 |   | 2idlcpblrng.x | 
. . . . . . . . 9
            | 
| 4 |   | 2idlcpblrng.r | 
. . . . . . . . 9
        
~QG    | 
| 5 | 3, 4 | eqger 13354 | 
. . . . . . . 8
        SubGrp     
       | 
| 6 | 2, 5 | syl 14 | 
. . . . . . 7
         Rng      
       
 SubGrp                         
   | 
| 7 |   | simprl 529 | 
. . . . . . 7
         Rng      
       
 SubGrp                           | 
| 8 | 6, 7 | ersym 6604 | 
. . . . . 6
         Rng      
       
 SubGrp                           | 
| 9 |   | rngabl 13491 | 
. . . . . . . 8
       Rng          | 
| 10 | 9 | 3ad2ant1 1020 | 
. . . . . . 7
        Rng        
       SubGrp      
       | 
| 11 |   | eqid 2196 | 
. . . . . . . . . . . 12
   LIdeal       LIdeal    | 
| 12 |   | eqid 2196 | 
. . . . . . . . . . . 12
   oppr       oppr    | 
| 13 |   | eqid 2196 | 
. . . . . . . . . . . 12
   LIdeal  oppr        LIdeal  oppr     | 
| 14 |   | 2idlcpblrng.i | 
. . . . . . . . . . . 12
       2Ideal    | 
| 15 | 11, 12, 13, 14 | 2idlelb 14061 | 
. . . . . . . . . . 11
          
      LIdeal       
   LIdeal  oppr       | 
| 16 | 15 | simplbi 274 | 
. . . . . . . . . 10
                LIdeal     | 
| 17 | 16 | 3ad2ant2 1021 | 
. . . . . . . . 9
        Rng        
       SubGrp      
     LIdeal     | 
| 18 | 17 | adantr 276 | 
. . . . . . . 8
         Rng      
       
 SubGrp                         
 LIdeal     | 
| 19 | 3, 11 | lidlss 14032 | 
. . . . . . . 8
        LIdeal     
       | 
| 20 | 18, 19 | syl 14 | 
. . . . . . 7
         Rng      
       
 SubGrp                             | 
| 21 |   | eqid 2196 | 
. . . . . . . 8
                | 
| 22 | 3, 21, 4 | eqgabl 13460 | 
. . . . . . 7
                           
      
                           | 
| 23 | 10, 20, 22 | syl2an2r 595 | 
. . . . . 6
         Rng      
       
 SubGrp                                       
                       | 
| 24 | 8, 23 | mpbid 147 | 
. . . . 5
         Rng      
       
 SubGrp                                
                      | 
| 25 | 24 | simp2d 1012 | 
. . . 4
         Rng      
       
 SubGrp                         
   | 
| 26 |   | simprr 531 | 
. . . . . 6
         Rng      
       
 SubGrp                           | 
| 27 | 3, 21, 4 | eqgabl 13460 | 
. . . . . . 7
                           
      
                           | 
| 28 | 10, 20, 27 | syl2an2r 595 | 
. . . . . 6
         Rng      
       
 SubGrp                                       
                       | 
| 29 | 26, 28 | mpbid 147 | 
. . . . 5
         Rng      
       
 SubGrp                                
                      | 
| 30 | 29 | simp1d 1011 | 
. . . 4
         Rng      
       
 SubGrp                         
   | 
| 31 |   | 2idlcpblrng.t | 
. . . . 5
            | 
| 32 | 3, 31 | rngcl 13500 | 
. . . 4
        Rng        
                        | 
| 33 | 1, 25, 30, 32 | syl3anc 1249 | 
. . 3
         Rng      
       
 SubGrp                                   | 
| 34 | 24 | simp1d 1011 | 
. . . 4
         Rng      
       
 SubGrp                         
   | 
| 35 | 29 | simp2d 1012 | 
. . . 4
         Rng      
       
 SubGrp                         
   | 
| 36 | 3, 31 | rngcl 13500 | 
. . . 4
        Rng        
                        | 
| 37 | 1, 34, 35, 36 | syl3anc 1249 | 
. . 3
         Rng      
       
 SubGrp                                   | 
| 38 |   | rnggrp 13494 | 
. . . . . . 7
       Rng          | 
| 39 | 38 | 3ad2ant1 1020 | 
. . . . . 6
        Rng        
       SubGrp      
       | 
| 40 | 39 | adantr 276 | 
. . . . 5
         Rng      
       
 SubGrp                         
   | 
| 41 | 3, 31 | rngcl 13500 | 
. . . . . 6
        Rng        
                        | 
| 42 | 1, 34, 30, 41 | syl3anc 1249 | 
. . . . 5
         Rng      
       
 SubGrp                                   | 
| 43 | 3, 21 | grpnnncan2 13229 | 
. . . . 5
                                           
                                                                                        | 
| 44 | 40, 37, 33, 42, 43 | syl13anc 1251 | 
. . . 4
         Rng      
       
 SubGrp                                                                                                 | 
| 45 | 3, 31, 21, 1, 34, 35, 30 | rngsubdi 13507 | 
. . . . . 6
         Rng      
       
 SubGrp                                                               | 
| 46 |   | eqid 2196 | 
. . . . . . . . . 10
                | 
| 47 | 46 | subg0cl 13312 | 
. . . . . . . . 9
        SubGrp     
           | 
| 48 | 47 | 3ad2ant3 1022 | 
. . . . . . . 8
        Rng        
       SubGrp      
           | 
| 49 | 48 | adantr 276 | 
. . . . . . 7
         Rng      
       
 SubGrp                                 | 
| 50 | 29 | simp3d 1013 | 
. . . . . . 7
         Rng      
       
 SubGrp                                     | 
| 51 | 46, 3, 31, 11 | rnglidlmcl 14036 | 
. . . . . . 7
         Rng      
 LIdeal     
            
      
                                         | 
| 52 | 1, 18, 49, 34, 50, 51 | syl32anc 1257 | 
. . . . . 6
         Rng      
       
 SubGrp                                           | 
| 53 | 45, 52 | eqeltrrd 2274 | 
. . . . 5
         Rng      
       
 SubGrp                                                 | 
| 54 | 3, 21 | grpsubcl 13212 | 
. . . . . . . . 9
               
       
                    | 
| 55 | 40, 25, 34, 54 | syl3anc 1249 | 
. . . . . . . 8
         Rng      
       
 SubGrp                                     | 
| 56 |   | eqid 2196 | 
. . . . . . . . 9
      oppr           oppr     | 
| 57 | 3, 31, 12, 56 | opprmulg 13627 | 
. . . . . . . 8
        Rng        
                         oppr                                  | 
| 58 | 1, 30, 55, 57 | syl3anc 1249 | 
. . . . . . 7
         Rng      
       
 SubGrp                            oppr                                  | 
| 59 | 3, 31, 21, 1, 25, 34, 30 | rngsubdir 13508 | 
. . . . . . 7
         Rng      
       
 SubGrp                                                               | 
| 60 | 58, 59 | eqtrd 2229 | 
. . . . . 6
         Rng      
       
 SubGrp                            oppr                                        | 
| 61 | 12 | opprrng 13633 | 
. . . . . . . . 9
       Rng    oppr      Rng  | 
| 62 | 61 | 3ad2ant1 1020 | 
. . . . . . . 8
        Rng        
       SubGrp      
 oppr      Rng  | 
| 63 | 62 | adantr 276 | 
. . . . . . 7
         Rng      
       
 SubGrp                       oppr      Rng  | 
| 64 | 15 | simprbi 275 | 
. . . . . . . . 9
                LIdeal  oppr      | 
| 65 | 64 | 3ad2ant2 1021 | 
. . . . . . . 8
        Rng        
       SubGrp      
     LIdeal  oppr      | 
| 66 | 65 | adantr 276 | 
. . . . . . 7
         Rng      
       
 SubGrp                         
 LIdeal  oppr      | 
| 67 | 12, 46 | oppr0g 13637 | 
. . . . . . . . 9
       Rng               oppr      | 
| 68 | 1, 67 | syl 14 | 
. . . . . . . 8
         Rng      
       
 SubGrp                                  oppr      | 
| 69 | 68, 49 | eqeltrrd 2274 | 
. . . . . . 7
         Rng      
       
 SubGrp                          oppr          | 
| 70 | 12, 3 | opprbasg 13631 | 
. . . . . . . . 9
       Rng           oppr      | 
| 71 | 1, 70 | syl 14 | 
. . . . . . . 8
         Rng      
       
 SubGrp                         
    oppr      | 
| 72 | 30, 71 | eleqtrd 2275 | 
. . . . . . 7
         Rng      
       
 SubGrp                         
    oppr      | 
| 73 | 24 | simp3d 1013 | 
. . . . . . 7
         Rng      
       
 SubGrp                                     | 
| 74 |   | eqid 2196 | 
. . . . . . . 8
      oppr           oppr     | 
| 75 |   | eqid 2196 | 
. . . . . . . 8
      oppr           oppr     | 
| 76 | 74, 75, 56, 13 | rnglidlmcl 14036 | 
. . . . . . 7
      oppr      Rng    
   LIdeal  oppr           oppr                
    oppr                               oppr                    | 
| 77 | 63, 66, 69, 72, 73, 76 | syl32anc 1257 | 
. . . . . 6
         Rng      
       
 SubGrp                            oppr                    | 
| 78 | 60, 77 | eqeltrrd 2274 | 
. . . . 5
         Rng      
       
 SubGrp                                                 | 
| 79 | 21 | subgsubcl 13315 | 
. . . . 5
         SubGrp                                                                                                                      | 
| 80 | 2, 53, 78, 79 | syl3anc 1249 | 
. . . 4
         Rng      
       
 SubGrp                                                                             | 
| 81 | 44, 80 | eqeltrrd 2274 | 
. . 3
         Rng      
       
 SubGrp                                                 | 
| 82 | 3, 21, 4 | eqgabl 13460 | 
. . . 4
                                       
                                                          | 
| 83 | 10, 20, 82 | syl2an2r 595 | 
. . 3
         Rng      
       
 SubGrp                                                                                                   | 
| 84 | 33, 37, 81, 83 | mpbir3and 1182 | 
. 2
         Rng      
       
 SubGrp                                       | 
| 85 | 84 | ex 115 | 
1
        Rng        
       SubGrp      
                                 |