ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rnglz Unicode version

Theorem rnglz 13441
Description: The zero of a non-unital ring is a left-absorbing element. (Contributed by FL, 31-Aug-2009.) Generalization of ringlz 13539. (Revised by AV, 17-Apr-2020.)
Hypotheses
Ref Expression
rngcl.b  |-  B  =  ( Base `  R
)
rngcl.t  |-  .x.  =  ( .r `  R )
rnglz.z  |-  .0.  =  ( 0g `  R )
Assertion
Ref Expression
rnglz  |-  ( ( R  e. Rng  /\  X  e.  B )  ->  (  .0.  .x.  X )  =  .0.  )

Proof of Theorem rnglz
StepHypRef Expression
1 rngabl 13431 . . . . . . 7  |-  ( R  e. Rng  ->  R  e.  Abel )
2 ablgrp 13359 . . . . . . 7  |-  ( R  e.  Abel  ->  R  e. 
Grp )
31, 2syl 14 . . . . . 6  |-  ( R  e. Rng  ->  R  e.  Grp )
4 rngcl.b . . . . . . 7  |-  B  =  ( Base `  R
)
5 rnglz.z . . . . . . 7  |-  .0.  =  ( 0g `  R )
64, 5grpidcl 13101 . . . . . 6  |-  ( R  e.  Grp  ->  .0.  e.  B )
7 eqid 2193 . . . . . . 7  |-  ( +g  `  R )  =  ( +g  `  R )
84, 7, 5grplid 13103 . . . . . 6  |-  ( ( R  e.  Grp  /\  .0.  e.  B )  -> 
(  .0.  ( +g  `  R )  .0.  )  =  .0.  )
93, 6, 8syl2anc2 412 . . . . 5  |-  ( R  e. Rng  ->  (  .0.  ( +g  `  R )  .0.  )  =  .0.  )
109adantr 276 . . . 4  |-  ( ( R  e. Rng  /\  X  e.  B )  ->  (  .0.  ( +g  `  R
)  .0.  )  =  .0.  )
1110oveq1d 5933 . . 3  |-  ( ( R  e. Rng  /\  X  e.  B )  ->  (
(  .0.  ( +g  `  R )  .0.  )  .x.  X )  =  (  .0.  .x.  X )
)
12 simpl 109 . . . 4  |-  ( ( R  e. Rng  /\  X  e.  B )  ->  R  e. Rng )
133, 6syl 14 . . . . . . 7  |-  ( R  e. Rng  ->  .0.  e.  B
)
1413, 13jca 306 . . . . . 6  |-  ( R  e. Rng  ->  (  .0.  e.  B  /\  .0.  e.  B
) )
1514anim1i 340 . . . . 5  |-  ( ( R  e. Rng  /\  X  e.  B )  ->  (
(  .0.  e.  B  /\  .0.  e.  B )  /\  X  e.  B
) )
16 df-3an 982 . . . . 5  |-  ( (  .0.  e.  B  /\  .0.  e.  B  /\  X  e.  B )  <->  ( (  .0.  e.  B  /\  .0.  e.  B )  /\  X  e.  B ) )
1715, 16sylibr 134 . . . 4  |-  ( ( R  e. Rng  /\  X  e.  B )  ->  (  .0.  e.  B  /\  .0.  e.  B  /\  X  e.  B ) )
18 rngcl.t . . . . 5  |-  .x.  =  ( .r `  R )
194, 7, 18rngdir 13437 . . . 4  |-  ( ( R  e. Rng  /\  (  .0.  e.  B  /\  .0.  e.  B  /\  X  e.  B ) )  -> 
( (  .0.  ( +g  `  R )  .0.  )  .x.  X )  =  ( (  .0. 
.x.  X ) ( +g  `  R ) (  .0.  .x.  X
) ) )
2012, 17, 19syl2anc 411 . . 3  |-  ( ( R  e. Rng  /\  X  e.  B )  ->  (
(  .0.  ( +g  `  R )  .0.  )  .x.  X )  =  ( (  .0.  .x.  X
) ( +g  `  R
) (  .0.  .x.  X ) ) )
213adantr 276 . . . 4  |-  ( ( R  e. Rng  /\  X  e.  B )  ->  R  e.  Grp )
2213adantr 276 . . . . 5  |-  ( ( R  e. Rng  /\  X  e.  B )  ->  .0.  e.  B )
23 simpr 110 . . . . 5  |-  ( ( R  e. Rng  /\  X  e.  B )  ->  X  e.  B )
244, 18rngcl 13440 . . . . 5  |-  ( ( R  e. Rng  /\  .0.  e.  B  /\  X  e.  B )  ->  (  .0.  .x.  X )  e.  B )
2512, 22, 23, 24syl3anc 1249 . . . 4  |-  ( ( R  e. Rng  /\  X  e.  B )  ->  (  .0.  .x.  X )  e.  B )
264, 7, 5grprid 13104 . . . . 5  |-  ( ( R  e.  Grp  /\  (  .0.  .x.  X )  e.  B )  ->  (
(  .0.  .x.  X
) ( +g  `  R
)  .0.  )  =  (  .0.  .x.  X
) )
2726eqcomd 2199 . . . 4  |-  ( ( R  e.  Grp  /\  (  .0.  .x.  X )  e.  B )  ->  (  .0.  .x.  X )  =  ( (  .0.  .x.  X ) ( +g  `  R )  .0.  )
)
2821, 25, 27syl2anc 411 . . 3  |-  ( ( R  e. Rng  /\  X  e.  B )  ->  (  .0.  .x.  X )  =  ( (  .0.  .x.  X ) ( +g  `  R )  .0.  )
)
2911, 20, 283eqtr3d 2234 . 2  |-  ( ( R  e. Rng  /\  X  e.  B )  ->  (
(  .0.  .x.  X
) ( +g  `  R
) (  .0.  .x.  X ) )  =  ( (  .0.  .x.  X ) ( +g  `  R )  .0.  )
)
304, 7grplcan 13134 . . 3  |-  ( ( R  e.  Grp  /\  ( (  .0.  .x.  X )  e.  B  /\  .0.  e.  B  /\  (  .0.  .x.  X )  e.  B ) )  -> 
( ( (  .0. 
.x.  X ) ( +g  `  R ) (  .0.  .x.  X
) )  =  ( (  .0.  .x.  X
) ( +g  `  R
)  .0.  )  <->  (  .0.  .x. 
X )  =  .0.  ) )
3121, 25, 22, 25, 30syl13anc 1251 . 2  |-  ( ( R  e. Rng  /\  X  e.  B )  ->  (
( (  .0.  .x.  X ) ( +g  `  R ) (  .0. 
.x.  X ) )  =  ( (  .0. 
.x.  X ) ( +g  `  R )  .0.  )  <->  (  .0.  .x. 
X )  =  .0.  ) )
3229, 31mpbid 147 1  |-  ( ( R  e. Rng  /\  X  e.  B )  ->  (  .0.  .x.  X )  =  .0.  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2164   ` cfv 5254  (class class class)co 5918   Basecbs 12618   +g cplusg 12695   .rcmulr 12696   0gc0g 12867   Grpcgrp 13072   Abelcabl 13355  Rngcrng 13428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-pre-ltirr 7984  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-ltxr 8059  df-inn 8983  df-2 9041  df-3 9042  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-plusg 12708  df-mulr 12709  df-0g 12869  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-grp 13075  df-minusg 13076  df-abl 13357  df-mgp 13417  df-rng 13429
This theorem is referenced by:  rngmneg1  13443
  Copyright terms: Public domain W3C validator