ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rnglz Unicode version

Theorem rnglz 13707
Description: The zero of a non-unital ring is a left-absorbing element. (Contributed by FL, 31-Aug-2009.) Generalization of ringlz 13805. (Revised by AV, 17-Apr-2020.)
Hypotheses
Ref Expression
rngcl.b  |-  B  =  ( Base `  R
)
rngcl.t  |-  .x.  =  ( .r `  R )
rnglz.z  |-  .0.  =  ( 0g `  R )
Assertion
Ref Expression
rnglz  |-  ( ( R  e. Rng  /\  X  e.  B )  ->  (  .0.  .x.  X )  =  .0.  )

Proof of Theorem rnglz
StepHypRef Expression
1 rngabl 13697 . . . . . . 7  |-  ( R  e. Rng  ->  R  e.  Abel )
2 ablgrp 13625 . . . . . . 7  |-  ( R  e.  Abel  ->  R  e. 
Grp )
31, 2syl 14 . . . . . 6  |-  ( R  e. Rng  ->  R  e.  Grp )
4 rngcl.b . . . . . . 7  |-  B  =  ( Base `  R
)
5 rnglz.z . . . . . . 7  |-  .0.  =  ( 0g `  R )
64, 5grpidcl 13361 . . . . . 6  |-  ( R  e.  Grp  ->  .0.  e.  B )
7 eqid 2205 . . . . . . 7  |-  ( +g  `  R )  =  ( +g  `  R )
84, 7, 5grplid 13363 . . . . . 6  |-  ( ( R  e.  Grp  /\  .0.  e.  B )  -> 
(  .0.  ( +g  `  R )  .0.  )  =  .0.  )
93, 6, 8syl2anc2 412 . . . . 5  |-  ( R  e. Rng  ->  (  .0.  ( +g  `  R )  .0.  )  =  .0.  )
109adantr 276 . . . 4  |-  ( ( R  e. Rng  /\  X  e.  B )  ->  (  .0.  ( +g  `  R
)  .0.  )  =  .0.  )
1110oveq1d 5959 . . 3  |-  ( ( R  e. Rng  /\  X  e.  B )  ->  (
(  .0.  ( +g  `  R )  .0.  )  .x.  X )  =  (  .0.  .x.  X )
)
12 simpl 109 . . . 4  |-  ( ( R  e. Rng  /\  X  e.  B )  ->  R  e. Rng )
133, 6syl 14 . . . . . . 7  |-  ( R  e. Rng  ->  .0.  e.  B
)
1413, 13jca 306 . . . . . 6  |-  ( R  e. Rng  ->  (  .0.  e.  B  /\  .0.  e.  B
) )
1514anim1i 340 . . . . 5  |-  ( ( R  e. Rng  /\  X  e.  B )  ->  (
(  .0.  e.  B  /\  .0.  e.  B )  /\  X  e.  B
) )
16 df-3an 983 . . . . 5  |-  ( (  .0.  e.  B  /\  .0.  e.  B  /\  X  e.  B )  <->  ( (  .0.  e.  B  /\  .0.  e.  B )  /\  X  e.  B ) )
1715, 16sylibr 134 . . . 4  |-  ( ( R  e. Rng  /\  X  e.  B )  ->  (  .0.  e.  B  /\  .0.  e.  B  /\  X  e.  B ) )
18 rngcl.t . . . . 5  |-  .x.  =  ( .r `  R )
194, 7, 18rngdir 13703 . . . 4  |-  ( ( R  e. Rng  /\  (  .0.  e.  B  /\  .0.  e.  B  /\  X  e.  B ) )  -> 
( (  .0.  ( +g  `  R )  .0.  )  .x.  X )  =  ( (  .0. 
.x.  X ) ( +g  `  R ) (  .0.  .x.  X
) ) )
2012, 17, 19syl2anc 411 . . 3  |-  ( ( R  e. Rng  /\  X  e.  B )  ->  (
(  .0.  ( +g  `  R )  .0.  )  .x.  X )  =  ( (  .0.  .x.  X
) ( +g  `  R
) (  .0.  .x.  X ) ) )
213adantr 276 . . . 4  |-  ( ( R  e. Rng  /\  X  e.  B )  ->  R  e.  Grp )
2213adantr 276 . . . . 5  |-  ( ( R  e. Rng  /\  X  e.  B )  ->  .0.  e.  B )
23 simpr 110 . . . . 5  |-  ( ( R  e. Rng  /\  X  e.  B )  ->  X  e.  B )
244, 18rngcl 13706 . . . . 5  |-  ( ( R  e. Rng  /\  .0.  e.  B  /\  X  e.  B )  ->  (  .0.  .x.  X )  e.  B )
2512, 22, 23, 24syl3anc 1250 . . . 4  |-  ( ( R  e. Rng  /\  X  e.  B )  ->  (  .0.  .x.  X )  e.  B )
264, 7, 5grprid 13364 . . . . 5  |-  ( ( R  e.  Grp  /\  (  .0.  .x.  X )  e.  B )  ->  (
(  .0.  .x.  X
) ( +g  `  R
)  .0.  )  =  (  .0.  .x.  X
) )
2726eqcomd 2211 . . . 4  |-  ( ( R  e.  Grp  /\  (  .0.  .x.  X )  e.  B )  ->  (  .0.  .x.  X )  =  ( (  .0.  .x.  X ) ( +g  `  R )  .0.  )
)
2821, 25, 27syl2anc 411 . . 3  |-  ( ( R  e. Rng  /\  X  e.  B )  ->  (  .0.  .x.  X )  =  ( (  .0.  .x.  X ) ( +g  `  R )  .0.  )
)
2911, 20, 283eqtr3d 2246 . 2  |-  ( ( R  e. Rng  /\  X  e.  B )  ->  (
(  .0.  .x.  X
) ( +g  `  R
) (  .0.  .x.  X ) )  =  ( (  .0.  .x.  X ) ( +g  `  R )  .0.  )
)
304, 7grplcan 13394 . . 3  |-  ( ( R  e.  Grp  /\  ( (  .0.  .x.  X )  e.  B  /\  .0.  e.  B  /\  (  .0.  .x.  X )  e.  B ) )  -> 
( ( (  .0. 
.x.  X ) ( +g  `  R ) (  .0.  .x.  X
) )  =  ( (  .0.  .x.  X
) ( +g  `  R
)  .0.  )  <->  (  .0.  .x. 
X )  =  .0.  ) )
3121, 25, 22, 25, 30syl13anc 1252 . 2  |-  ( ( R  e. Rng  /\  X  e.  B )  ->  (
( (  .0.  .x.  X ) ( +g  `  R ) (  .0. 
.x.  X ) )  =  ( (  .0. 
.x.  X ) ( +g  `  R )  .0.  )  <->  (  .0.  .x. 
X )  =  .0.  ) )
3229, 31mpbid 147 1  |-  ( ( R  e. Rng  /\  X  e.  B )  ->  (  .0.  .x.  X )  =  .0.  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2176   ` cfv 5271  (class class class)co 5944   Basecbs 12832   +g cplusg 12909   .rcmulr 12910   0gc0g 13088   Grpcgrp 13332   Abelcabl 13621  Rngcrng 13694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-pre-ltirr 8037  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-pnf 8109  df-mnf 8110  df-ltxr 8112  df-inn 9037  df-2 9095  df-3 9096  df-ndx 12835  df-slot 12836  df-base 12838  df-sets 12839  df-plusg 12922  df-mulr 12923  df-0g 13090  df-mgm 13188  df-sgrp 13234  df-mnd 13249  df-grp 13335  df-minusg 13336  df-abl 13623  df-mgp 13683  df-rng 13695
This theorem is referenced by:  rngmneg1  13709
  Copyright terms: Public domain W3C validator