ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rngdir GIF version

Theorem rngdir 13753
Description: Distributive law for the multiplication operation of a non-unital ring (right-distributivity). (Contributed by AV, 17-Apr-2020.)
Hypotheses
Ref Expression
rngdi.b 𝐵 = (Base‘𝑅)
rngdi.p + = (+g𝑅)
rngdi.t · = (.r𝑅)
Assertion
Ref Expression
rngdir ((𝑅 ∈ Rng ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + 𝑌) · 𝑍) = ((𝑋 · 𝑍) + (𝑌 · 𝑍)))

Proof of Theorem rngdir
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rngdi.b . . . 4 𝐵 = (Base‘𝑅)
2 eqid 2206 . . . 4 (mulGrp‘𝑅) = (mulGrp‘𝑅)
3 rngdi.p . . . 4 + = (+g𝑅)
4 rngdi.t . . . 4 · = (.r𝑅)
51, 2, 3, 4isrng 13746 . . 3 (𝑅 ∈ Rng ↔ (𝑅 ∈ Abel ∧ (mulGrp‘𝑅) ∈ Smgrp ∧ ∀𝑎𝐵𝑏𝐵𝑐𝐵 ((𝑎 · (𝑏 + 𝑐)) = ((𝑎 · 𝑏) + (𝑎 · 𝑐)) ∧ ((𝑎 + 𝑏) · 𝑐) = ((𝑎 · 𝑐) + (𝑏 · 𝑐)))))
6 oveq1 5961 . . . . . . . 8 (𝑎 = 𝑋 → (𝑎 · (𝑏 + 𝑐)) = (𝑋 · (𝑏 + 𝑐)))
7 oveq1 5961 . . . . . . . . 9 (𝑎 = 𝑋 → (𝑎 · 𝑏) = (𝑋 · 𝑏))
8 oveq1 5961 . . . . . . . . 9 (𝑎 = 𝑋 → (𝑎 · 𝑐) = (𝑋 · 𝑐))
97, 8oveq12d 5972 . . . . . . . 8 (𝑎 = 𝑋 → ((𝑎 · 𝑏) + (𝑎 · 𝑐)) = ((𝑋 · 𝑏) + (𝑋 · 𝑐)))
106, 9eqeq12d 2221 . . . . . . 7 (𝑎 = 𝑋 → ((𝑎 · (𝑏 + 𝑐)) = ((𝑎 · 𝑏) + (𝑎 · 𝑐)) ↔ (𝑋 · (𝑏 + 𝑐)) = ((𝑋 · 𝑏) + (𝑋 · 𝑐))))
11 oveq1 5961 . . . . . . . . 9 (𝑎 = 𝑋 → (𝑎 + 𝑏) = (𝑋 + 𝑏))
1211oveq1d 5969 . . . . . . . 8 (𝑎 = 𝑋 → ((𝑎 + 𝑏) · 𝑐) = ((𝑋 + 𝑏) · 𝑐))
138oveq1d 5969 . . . . . . . 8 (𝑎 = 𝑋 → ((𝑎 · 𝑐) + (𝑏 · 𝑐)) = ((𝑋 · 𝑐) + (𝑏 · 𝑐)))
1412, 13eqeq12d 2221 . . . . . . 7 (𝑎 = 𝑋 → (((𝑎 + 𝑏) · 𝑐) = ((𝑎 · 𝑐) + (𝑏 · 𝑐)) ↔ ((𝑋 + 𝑏) · 𝑐) = ((𝑋 · 𝑐) + (𝑏 · 𝑐))))
1510, 14anbi12d 473 . . . . . 6 (𝑎 = 𝑋 → (((𝑎 · (𝑏 + 𝑐)) = ((𝑎 · 𝑏) + (𝑎 · 𝑐)) ∧ ((𝑎 + 𝑏) · 𝑐) = ((𝑎 · 𝑐) + (𝑏 · 𝑐))) ↔ ((𝑋 · (𝑏 + 𝑐)) = ((𝑋 · 𝑏) + (𝑋 · 𝑐)) ∧ ((𝑋 + 𝑏) · 𝑐) = ((𝑋 · 𝑐) + (𝑏 · 𝑐)))))
16 oveq1 5961 . . . . . . . . 9 (𝑏 = 𝑌 → (𝑏 + 𝑐) = (𝑌 + 𝑐))
1716oveq2d 5970 . . . . . . . 8 (𝑏 = 𝑌 → (𝑋 · (𝑏 + 𝑐)) = (𝑋 · (𝑌 + 𝑐)))
18 oveq2 5962 . . . . . . . . 9 (𝑏 = 𝑌 → (𝑋 · 𝑏) = (𝑋 · 𝑌))
1918oveq1d 5969 . . . . . . . 8 (𝑏 = 𝑌 → ((𝑋 · 𝑏) + (𝑋 · 𝑐)) = ((𝑋 · 𝑌) + (𝑋 · 𝑐)))
2017, 19eqeq12d 2221 . . . . . . 7 (𝑏 = 𝑌 → ((𝑋 · (𝑏 + 𝑐)) = ((𝑋 · 𝑏) + (𝑋 · 𝑐)) ↔ (𝑋 · (𝑌 + 𝑐)) = ((𝑋 · 𝑌) + (𝑋 · 𝑐))))
21 oveq2 5962 . . . . . . . . 9 (𝑏 = 𝑌 → (𝑋 + 𝑏) = (𝑋 + 𝑌))
2221oveq1d 5969 . . . . . . . 8 (𝑏 = 𝑌 → ((𝑋 + 𝑏) · 𝑐) = ((𝑋 + 𝑌) · 𝑐))
23 oveq1 5961 . . . . . . . . 9 (𝑏 = 𝑌 → (𝑏 · 𝑐) = (𝑌 · 𝑐))
2423oveq2d 5970 . . . . . . . 8 (𝑏 = 𝑌 → ((𝑋 · 𝑐) + (𝑏 · 𝑐)) = ((𝑋 · 𝑐) + (𝑌 · 𝑐)))
2522, 24eqeq12d 2221 . . . . . . 7 (𝑏 = 𝑌 → (((𝑋 + 𝑏) · 𝑐) = ((𝑋 · 𝑐) + (𝑏 · 𝑐)) ↔ ((𝑋 + 𝑌) · 𝑐) = ((𝑋 · 𝑐) + (𝑌 · 𝑐))))
2620, 25anbi12d 473 . . . . . 6 (𝑏 = 𝑌 → (((𝑋 · (𝑏 + 𝑐)) = ((𝑋 · 𝑏) + (𝑋 · 𝑐)) ∧ ((𝑋 + 𝑏) · 𝑐) = ((𝑋 · 𝑐) + (𝑏 · 𝑐))) ↔ ((𝑋 · (𝑌 + 𝑐)) = ((𝑋 · 𝑌) + (𝑋 · 𝑐)) ∧ ((𝑋 + 𝑌) · 𝑐) = ((𝑋 · 𝑐) + (𝑌 · 𝑐)))))
27 oveq2 5962 . . . . . . . . 9 (𝑐 = 𝑍 → (𝑌 + 𝑐) = (𝑌 + 𝑍))
2827oveq2d 5970 . . . . . . . 8 (𝑐 = 𝑍 → (𝑋 · (𝑌 + 𝑐)) = (𝑋 · (𝑌 + 𝑍)))
29 oveq2 5962 . . . . . . . . 9 (𝑐 = 𝑍 → (𝑋 · 𝑐) = (𝑋 · 𝑍))
3029oveq2d 5970 . . . . . . . 8 (𝑐 = 𝑍 → ((𝑋 · 𝑌) + (𝑋 · 𝑐)) = ((𝑋 · 𝑌) + (𝑋 · 𝑍)))
3128, 30eqeq12d 2221 . . . . . . 7 (𝑐 = 𝑍 → ((𝑋 · (𝑌 + 𝑐)) = ((𝑋 · 𝑌) + (𝑋 · 𝑐)) ↔ (𝑋 · (𝑌 + 𝑍)) = ((𝑋 · 𝑌) + (𝑋 · 𝑍))))
32 oveq2 5962 . . . . . . . 8 (𝑐 = 𝑍 → ((𝑋 + 𝑌) · 𝑐) = ((𝑋 + 𝑌) · 𝑍))
33 oveq2 5962 . . . . . . . . 9 (𝑐 = 𝑍 → (𝑌 · 𝑐) = (𝑌 · 𝑍))
3429, 33oveq12d 5972 . . . . . . . 8 (𝑐 = 𝑍 → ((𝑋 · 𝑐) + (𝑌 · 𝑐)) = ((𝑋 · 𝑍) + (𝑌 · 𝑍)))
3532, 34eqeq12d 2221 . . . . . . 7 (𝑐 = 𝑍 → (((𝑋 + 𝑌) · 𝑐) = ((𝑋 · 𝑐) + (𝑌 · 𝑐)) ↔ ((𝑋 + 𝑌) · 𝑍) = ((𝑋 · 𝑍) + (𝑌 · 𝑍))))
3631, 35anbi12d 473 . . . . . 6 (𝑐 = 𝑍 → (((𝑋 · (𝑌 + 𝑐)) = ((𝑋 · 𝑌) + (𝑋 · 𝑐)) ∧ ((𝑋 + 𝑌) · 𝑐) = ((𝑋 · 𝑐) + (𝑌 · 𝑐))) ↔ ((𝑋 · (𝑌 + 𝑍)) = ((𝑋 · 𝑌) + (𝑋 · 𝑍)) ∧ ((𝑋 + 𝑌) · 𝑍) = ((𝑋 · 𝑍) + (𝑌 · 𝑍)))))
3715, 26, 36rspc3v 2895 . . . . 5 ((𝑋𝐵𝑌𝐵𝑍𝐵) → (∀𝑎𝐵𝑏𝐵𝑐𝐵 ((𝑎 · (𝑏 + 𝑐)) = ((𝑎 · 𝑏) + (𝑎 · 𝑐)) ∧ ((𝑎 + 𝑏) · 𝑐) = ((𝑎 · 𝑐) + (𝑏 · 𝑐))) → ((𝑋 · (𝑌 + 𝑍)) = ((𝑋 · 𝑌) + (𝑋 · 𝑍)) ∧ ((𝑋 + 𝑌) · 𝑍) = ((𝑋 · 𝑍) + (𝑌 · 𝑍)))))
38 simpr 110 . . . . 5 (((𝑋 · (𝑌 + 𝑍)) = ((𝑋 · 𝑌) + (𝑋 · 𝑍)) ∧ ((𝑋 + 𝑌) · 𝑍) = ((𝑋 · 𝑍) + (𝑌 · 𝑍))) → ((𝑋 + 𝑌) · 𝑍) = ((𝑋 · 𝑍) + (𝑌 · 𝑍)))
3937, 38syl6com 35 . . . 4 (∀𝑎𝐵𝑏𝐵𝑐𝐵 ((𝑎 · (𝑏 + 𝑐)) = ((𝑎 · 𝑏) + (𝑎 · 𝑐)) ∧ ((𝑎 + 𝑏) · 𝑐) = ((𝑎 · 𝑐) + (𝑏 · 𝑐))) → ((𝑋𝐵𝑌𝐵𝑍𝐵) → ((𝑋 + 𝑌) · 𝑍) = ((𝑋 · 𝑍) + (𝑌 · 𝑍))))
40393ad2ant3 1023 . . 3 ((𝑅 ∈ Abel ∧ (mulGrp‘𝑅) ∈ Smgrp ∧ ∀𝑎𝐵𝑏𝐵𝑐𝐵 ((𝑎 · (𝑏 + 𝑐)) = ((𝑎 · 𝑏) + (𝑎 · 𝑐)) ∧ ((𝑎 + 𝑏) · 𝑐) = ((𝑎 · 𝑐) + (𝑏 · 𝑐)))) → ((𝑋𝐵𝑌𝐵𝑍𝐵) → ((𝑋 + 𝑌) · 𝑍) = ((𝑋 · 𝑍) + (𝑌 · 𝑍))))
415, 40sylbi 121 . 2 (𝑅 ∈ Rng → ((𝑋𝐵𝑌𝐵𝑍𝐵) → ((𝑋 + 𝑌) · 𝑍) = ((𝑋 · 𝑍) + (𝑌 · 𝑍))))
4241imp 124 1 ((𝑅 ∈ Rng ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + 𝑌) · 𝑍) = ((𝑋 · 𝑍) + (𝑌 · 𝑍)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 981   = wceq 1373  wcel 2177  wral 2485  cfv 5277  (class class class)co 5954  Basecbs 12882  +gcplusg 12959  .rcmulr 12960  Smgrpcsgrp 13283  Abelcabl 13671  mulGrpcmgp 13732  Rngcrng 13744
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4167  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-cnex 8029  ax-resscn 8030  ax-1re 8032  ax-addrcl 8035
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3001  df-un 3172  df-in 3174  df-ss 3181  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-int 3889  df-br 4049  df-opab 4111  df-mpt 4112  df-id 4345  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-iota 5238  df-fun 5279  df-fn 5280  df-fv 5285  df-ov 5957  df-inn 9050  df-2 9108  df-3 9109  df-ndx 12885  df-slot 12886  df-base 12888  df-plusg 12972  df-mulr 12973  df-rng 13745
This theorem is referenced by:  rnglz  13757  rngmneg1  13759  rngsubdir  13764  rngressid  13766  imasrng  13768  opprrng  13889  issubrng2  14022  rnglidlrng  14310
  Copyright terms: Public domain W3C validator