ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rngmneg1 Unicode version

Theorem rngmneg1 13910
Description: Negation of a product in a non-unital ring (mulneg1 8541 analog). In contrast to ringmneg1 14016, the proof does not (and cannot) make use of the existence of a ring unity. (Contributed by AV, 17-Feb-2025.)
Hypotheses
Ref Expression
rngneglmul.b  |-  B  =  ( Base `  R
)
rngneglmul.t  |-  .x.  =  ( .r `  R )
rngneglmul.n  |-  N  =  ( invg `  R )
rngneglmul.r  |-  ( ph  ->  R  e. Rng )
rngneglmul.x  |-  ( ph  ->  X  e.  B )
rngneglmul.y  |-  ( ph  ->  Y  e.  B )
Assertion
Ref Expression
rngmneg1  |-  ( ph  ->  ( ( N `  X )  .x.  Y
)  =  ( N `
 ( X  .x.  Y ) ) )

Proof of Theorem rngmneg1
StepHypRef Expression
1 rngneglmul.b . . . . . 6  |-  B  =  ( Base `  R
)
2 eqid 2229 . . . . . 6  |-  ( +g  `  R )  =  ( +g  `  R )
3 eqid 2229 . . . . . 6  |-  ( 0g
`  R )  =  ( 0g `  R
)
4 rngneglmul.n . . . . . 6  |-  N  =  ( invg `  R )
5 rngneglmul.r . . . . . . 7  |-  ( ph  ->  R  e. Rng )
6 rnggrp 13901 . . . . . . 7  |-  ( R  e. Rng  ->  R  e.  Grp )
75, 6syl 14 . . . . . 6  |-  ( ph  ->  R  e.  Grp )
8 rngneglmul.x . . . . . 6  |-  ( ph  ->  X  e.  B )
91, 2, 3, 4, 7, 8grprinvd 13589 . . . . 5  |-  ( ph  ->  ( X ( +g  `  R ) ( N `
 X ) )  =  ( 0g `  R ) )
109oveq1d 6016 . . . 4  |-  ( ph  ->  ( ( X ( +g  `  R ) ( N `  X
) )  .x.  Y
)  =  ( ( 0g `  R ) 
.x.  Y ) )
11 rngneglmul.y . . . . 5  |-  ( ph  ->  Y  e.  B )
12 rngneglmul.t . . . . . 6  |-  .x.  =  ( .r `  R )
131, 12, 3rnglz 13908 . . . . 5  |-  ( ( R  e. Rng  /\  Y  e.  B )  ->  (
( 0g `  R
)  .x.  Y )  =  ( 0g `  R ) )
145, 11, 13syl2anc 411 . . . 4  |-  ( ph  ->  ( ( 0g `  R )  .x.  Y
)  =  ( 0g
`  R ) )
1510, 14eqtrd 2262 . . 3  |-  ( ph  ->  ( ( X ( +g  `  R ) ( N `  X
) )  .x.  Y
)  =  ( 0g
`  R ) )
161, 12rngcl 13907 . . . . . 6  |-  ( ( R  e. Rng  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .x.  Y )  e.  B )
175, 8, 11, 16syl3anc 1271 . . . . 5  |-  ( ph  ->  ( X  .x.  Y
)  e.  B )
181, 4, 7, 8grpinvcld 13582 . . . . . 6  |-  ( ph  ->  ( N `  X
)  e.  B )
191, 12rngcl 13907 . . . . . 6  |-  ( ( R  e. Rng  /\  ( N `  X )  e.  B  /\  Y  e.  B )  ->  (
( N `  X
)  .x.  Y )  e.  B )
205, 18, 11, 19syl3anc 1271 . . . . 5  |-  ( ph  ->  ( ( N `  X )  .x.  Y
)  e.  B )
211, 2, 3, 4grpinvid1 13585 . . . . 5  |-  ( ( R  e.  Grp  /\  ( X  .x.  Y )  e.  B  /\  (
( N `  X
)  .x.  Y )  e.  B )  ->  (
( N `  ( X  .x.  Y ) )  =  ( ( N `
 X )  .x.  Y )  <->  ( ( X  .x.  Y ) ( +g  `  R ) ( ( N `  X )  .x.  Y
) )  =  ( 0g `  R ) ) )
227, 17, 20, 21syl3anc 1271 . . . 4  |-  ( ph  ->  ( ( N `  ( X  .x.  Y ) )  =  ( ( N `  X ) 
.x.  Y )  <->  ( ( X  .x.  Y ) ( +g  `  R ) ( ( N `  X )  .x.  Y
) )  =  ( 0g `  R ) ) )
231, 2, 12rngdir 13904 . . . . . . 7  |-  ( ( R  e. Rng  /\  ( X  e.  B  /\  ( N `  X )  e.  B  /\  Y  e.  B ) )  -> 
( ( X ( +g  `  R ) ( N `  X
) )  .x.  Y
)  =  ( ( X  .x.  Y ) ( +g  `  R
) ( ( N `
 X )  .x.  Y ) ) )
2423eqcomd 2235 . . . . . 6  |-  ( ( R  e. Rng  /\  ( X  e.  B  /\  ( N `  X )  e.  B  /\  Y  e.  B ) )  -> 
( ( X  .x.  Y ) ( +g  `  R ) ( ( N `  X ) 
.x.  Y ) )  =  ( ( X ( +g  `  R
) ( N `  X ) )  .x.  Y ) )
255, 8, 18, 11, 24syl13anc 1273 . . . . 5  |-  ( ph  ->  ( ( X  .x.  Y ) ( +g  `  R ) ( ( N `  X ) 
.x.  Y ) )  =  ( ( X ( +g  `  R
) ( N `  X ) )  .x.  Y ) )
2625eqeq1d 2238 . . . 4  |-  ( ph  ->  ( ( ( X 
.x.  Y ) ( +g  `  R ) ( ( N `  X )  .x.  Y
) )  =  ( 0g `  R )  <-> 
( ( X ( +g  `  R ) ( N `  X
) )  .x.  Y
)  =  ( 0g
`  R ) ) )
2722, 26bitrd 188 . . 3  |-  ( ph  ->  ( ( N `  ( X  .x.  Y ) )  =  ( ( N `  X ) 
.x.  Y )  <->  ( ( X ( +g  `  R
) ( N `  X ) )  .x.  Y )  =  ( 0g `  R ) ) )
2815, 27mpbird 167 . 2  |-  ( ph  ->  ( N `  ( X  .x.  Y ) )  =  ( ( N `
 X )  .x.  Y ) )
2928eqcomd 2235 1  |-  ( ph  ->  ( ( N `  X )  .x.  Y
)  =  ( N `
 ( X  .x.  Y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 1002    = wceq 1395    e. wcel 2200   ` cfv 5318  (class class class)co 6001   Basecbs 13032   +g cplusg 13110   .rcmulr 13111   0gc0g 13289   Grpcgrp 13533   invgcminusg 13534  Rngcrng 13895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-pre-ltirr 8111  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-pnf 8183  df-mnf 8184  df-ltxr 8186  df-inn 9111  df-2 9169  df-3 9170  df-ndx 13035  df-slot 13036  df-base 13038  df-sets 13039  df-plusg 13123  df-mulr 13124  df-0g 13291  df-mgm 13389  df-sgrp 13435  df-mnd 13450  df-grp 13536  df-minusg 13537  df-abl 13824  df-mgp 13884  df-rng 13896
This theorem is referenced by:  rngm2neg  13912  rngsubdir  13915
  Copyright terms: Public domain W3C validator