ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rngsubdir Unicode version

Theorem rngsubdir 13829
Description: Ring multiplication distributes over subtraction. (subdir 8493 analog.) (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.) Generalization of ringsubdir 13934. (Revised by AV, 23-Feb-2025.)
Hypotheses
Ref Expression
rngsubdi.b  |-  B  =  ( Base `  R
)
rngsubdi.t  |-  .x.  =  ( .r `  R )
rngsubdi.m  |-  .-  =  ( -g `  R )
rngsubdi.r  |-  ( ph  ->  R  e. Rng )
rngsubdi.x  |-  ( ph  ->  X  e.  B )
rngsubdi.y  |-  ( ph  ->  Y  e.  B )
rngsubdi.z  |-  ( ph  ->  Z  e.  B )
Assertion
Ref Expression
rngsubdir  |-  ( ph  ->  ( ( X  .-  Y )  .x.  Z
)  =  ( ( X  .x.  Z ) 
.-  ( Y  .x.  Z ) ) )

Proof of Theorem rngsubdir
StepHypRef Expression
1 rngsubdi.r . . . 4  |-  ( ph  ->  R  e. Rng )
2 rngsubdi.x . . . 4  |-  ( ph  ->  X  e.  B )
3 rngsubdi.b . . . . 5  |-  B  =  ( Base `  R
)
4 eqid 2207 . . . . 5  |-  ( invg `  R )  =  ( invg `  R )
5 rnggrp 13815 . . . . . 6  |-  ( R  e. Rng  ->  R  e.  Grp )
61, 5syl 14 . . . . 5  |-  ( ph  ->  R  e.  Grp )
7 rngsubdi.y . . . . 5  |-  ( ph  ->  Y  e.  B )
83, 4, 6, 7grpinvcld 13496 . . . 4  |-  ( ph  ->  ( ( invg `  R ) `  Y
)  e.  B )
9 rngsubdi.z . . . 4  |-  ( ph  ->  Z  e.  B )
10 eqid 2207 . . . . 5  |-  ( +g  `  R )  =  ( +g  `  R )
11 rngsubdi.t . . . . 5  |-  .x.  =  ( .r `  R )
123, 10, 11rngdir 13818 . . . 4  |-  ( ( R  e. Rng  /\  ( X  e.  B  /\  ( ( invg `  R ) `  Y
)  e.  B  /\  Z  e.  B )
)  ->  ( ( X ( +g  `  R
) ( ( invg `  R ) `
 Y ) ) 
.x.  Z )  =  ( ( X  .x.  Z ) ( +g  `  R ) ( ( ( invg `  R ) `  Y
)  .x.  Z )
) )
131, 2, 8, 9, 12syl13anc 1252 . . 3  |-  ( ph  ->  ( ( X ( +g  `  R ) ( ( invg `  R ) `  Y
) )  .x.  Z
)  =  ( ( X  .x.  Z ) ( +g  `  R
) ( ( ( invg `  R
) `  Y )  .x.  Z ) ) )
143, 11, 4, 1, 7, 9rngmneg1 13824 . . . 4  |-  ( ph  ->  ( ( ( invg `  R ) `
 Y )  .x.  Z )  =  ( ( invg `  R ) `  ( Y  .x.  Z ) ) )
1514oveq2d 5983 . . 3  |-  ( ph  ->  ( ( X  .x.  Z ) ( +g  `  R ) ( ( ( invg `  R ) `  Y
)  .x.  Z )
)  =  ( ( X  .x.  Z ) ( +g  `  R
) ( ( invg `  R ) `
 ( Y  .x.  Z ) ) ) )
1613, 15eqtrd 2240 . 2  |-  ( ph  ->  ( ( X ( +g  `  R ) ( ( invg `  R ) `  Y
) )  .x.  Z
)  =  ( ( X  .x.  Z ) ( +g  `  R
) ( ( invg `  R ) `
 ( Y  .x.  Z ) ) ) )
17 rngsubdi.m . . . . 5  |-  .-  =  ( -g `  R )
183, 10, 4, 17grpsubval 13493 . . . 4  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  ( X  .-  Y
)  =  ( X ( +g  `  R
) ( ( invg `  R ) `
 Y ) ) )
192, 7, 18syl2anc 411 . . 3  |-  ( ph  ->  ( X  .-  Y
)  =  ( X ( +g  `  R
) ( ( invg `  R ) `
 Y ) ) )
2019oveq1d 5982 . 2  |-  ( ph  ->  ( ( X  .-  Y )  .x.  Z
)  =  ( ( X ( +g  `  R
) ( ( invg `  R ) `
 Y ) ) 
.x.  Z ) )
213, 11rngcl 13821 . . . 4  |-  ( ( R  e. Rng  /\  X  e.  B  /\  Z  e.  B )  ->  ( X  .x.  Z )  e.  B )
221, 2, 9, 21syl3anc 1250 . . 3  |-  ( ph  ->  ( X  .x.  Z
)  e.  B )
233, 11rngcl 13821 . . . 4  |-  ( ( R  e. Rng  /\  Y  e.  B  /\  Z  e.  B )  ->  ( Y  .x.  Z )  e.  B )
241, 7, 9, 23syl3anc 1250 . . 3  |-  ( ph  ->  ( Y  .x.  Z
)  e.  B )
253, 10, 4, 17grpsubval 13493 . . 3  |-  ( ( ( X  .x.  Z
)  e.  B  /\  ( Y  .x.  Z )  e.  B )  -> 
( ( X  .x.  Z )  .-  ( Y  .x.  Z ) )  =  ( ( X 
.x.  Z ) ( +g  `  R ) ( ( invg `  R ) `  ( Y  .x.  Z ) ) ) )
2622, 24, 25syl2anc 411 . 2  |-  ( ph  ->  ( ( X  .x.  Z )  .-  ( Y  .x.  Z ) )  =  ( ( X 
.x.  Z ) ( +g  `  R ) ( ( invg `  R ) `  ( Y  .x.  Z ) ) ) )
2716, 20, 263eqtr4d 2250 1  |-  ( ph  ->  ( ( X  .-  Y )  .x.  Z
)  =  ( ( X  .x.  Z ) 
.-  ( Y  .x.  Z ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2178   ` cfv 5290  (class class class)co 5967   Basecbs 12947   +g cplusg 13024   .rcmulr 13025   Grpcgrp 13447   invgcminusg 13448   -gcsg 13449  Rngcrng 13809
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-pre-ltirr 8072  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-pnf 8144  df-mnf 8145  df-ltxr 8147  df-inn 9072  df-2 9130  df-3 9131  df-ndx 12950  df-slot 12951  df-base 12953  df-sets 12954  df-plusg 13037  df-mulr 13038  df-0g 13205  df-mgm 13303  df-sgrp 13349  df-mnd 13364  df-grp 13450  df-minusg 13451  df-sbg 13452  df-abl 13738  df-mgp 13798  df-rng 13810
This theorem is referenced by:  2idlcpblrng  14400
  Copyright terms: Public domain W3C validator