ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rngsubdir Unicode version

Theorem rngsubdir 13584
Description: Ring multiplication distributes over subtraction. (subdir 8429 analog.) (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.) Generalization of ringsubdir 13689. (Revised by AV, 23-Feb-2025.)
Hypotheses
Ref Expression
rngsubdi.b  |-  B  =  ( Base `  R
)
rngsubdi.t  |-  .x.  =  ( .r `  R )
rngsubdi.m  |-  .-  =  ( -g `  R )
rngsubdi.r  |-  ( ph  ->  R  e. Rng )
rngsubdi.x  |-  ( ph  ->  X  e.  B )
rngsubdi.y  |-  ( ph  ->  Y  e.  B )
rngsubdi.z  |-  ( ph  ->  Z  e.  B )
Assertion
Ref Expression
rngsubdir  |-  ( ph  ->  ( ( X  .-  Y )  .x.  Z
)  =  ( ( X  .x.  Z ) 
.-  ( Y  .x.  Z ) ) )

Proof of Theorem rngsubdir
StepHypRef Expression
1 rngsubdi.r . . . 4  |-  ( ph  ->  R  e. Rng )
2 rngsubdi.x . . . 4  |-  ( ph  ->  X  e.  B )
3 rngsubdi.b . . . . 5  |-  B  =  ( Base `  R
)
4 eqid 2196 . . . . 5  |-  ( invg `  R )  =  ( invg `  R )
5 rnggrp 13570 . . . . . 6  |-  ( R  e. Rng  ->  R  e.  Grp )
61, 5syl 14 . . . . 5  |-  ( ph  ->  R  e.  Grp )
7 rngsubdi.y . . . . 5  |-  ( ph  ->  Y  e.  B )
83, 4, 6, 7grpinvcld 13251 . . . 4  |-  ( ph  ->  ( ( invg `  R ) `  Y
)  e.  B )
9 rngsubdi.z . . . 4  |-  ( ph  ->  Z  e.  B )
10 eqid 2196 . . . . 5  |-  ( +g  `  R )  =  ( +g  `  R )
11 rngsubdi.t . . . . 5  |-  .x.  =  ( .r `  R )
123, 10, 11rngdir 13573 . . . 4  |-  ( ( R  e. Rng  /\  ( X  e.  B  /\  ( ( invg `  R ) `  Y
)  e.  B  /\  Z  e.  B )
)  ->  ( ( X ( +g  `  R
) ( ( invg `  R ) `
 Y ) ) 
.x.  Z )  =  ( ( X  .x.  Z ) ( +g  `  R ) ( ( ( invg `  R ) `  Y
)  .x.  Z )
) )
131, 2, 8, 9, 12syl13anc 1251 . . 3  |-  ( ph  ->  ( ( X ( +g  `  R ) ( ( invg `  R ) `  Y
) )  .x.  Z
)  =  ( ( X  .x.  Z ) ( +g  `  R
) ( ( ( invg `  R
) `  Y )  .x.  Z ) ) )
143, 11, 4, 1, 7, 9rngmneg1 13579 . . . 4  |-  ( ph  ->  ( ( ( invg `  R ) `
 Y )  .x.  Z )  =  ( ( invg `  R ) `  ( Y  .x.  Z ) ) )
1514oveq2d 5941 . . 3  |-  ( ph  ->  ( ( X  .x.  Z ) ( +g  `  R ) ( ( ( invg `  R ) `  Y
)  .x.  Z )
)  =  ( ( X  .x.  Z ) ( +g  `  R
) ( ( invg `  R ) `
 ( Y  .x.  Z ) ) ) )
1613, 15eqtrd 2229 . 2  |-  ( ph  ->  ( ( X ( +g  `  R ) ( ( invg `  R ) `  Y
) )  .x.  Z
)  =  ( ( X  .x.  Z ) ( +g  `  R
) ( ( invg `  R ) `
 ( Y  .x.  Z ) ) ) )
17 rngsubdi.m . . . . 5  |-  .-  =  ( -g `  R )
183, 10, 4, 17grpsubval 13248 . . . 4  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  ( X  .-  Y
)  =  ( X ( +g  `  R
) ( ( invg `  R ) `
 Y ) ) )
192, 7, 18syl2anc 411 . . 3  |-  ( ph  ->  ( X  .-  Y
)  =  ( X ( +g  `  R
) ( ( invg `  R ) `
 Y ) ) )
2019oveq1d 5940 . 2  |-  ( ph  ->  ( ( X  .-  Y )  .x.  Z
)  =  ( ( X ( +g  `  R
) ( ( invg `  R ) `
 Y ) ) 
.x.  Z ) )
213, 11rngcl 13576 . . . 4  |-  ( ( R  e. Rng  /\  X  e.  B  /\  Z  e.  B )  ->  ( X  .x.  Z )  e.  B )
221, 2, 9, 21syl3anc 1249 . . 3  |-  ( ph  ->  ( X  .x.  Z
)  e.  B )
233, 11rngcl 13576 . . . 4  |-  ( ( R  e. Rng  /\  Y  e.  B  /\  Z  e.  B )  ->  ( Y  .x.  Z )  e.  B )
241, 7, 9, 23syl3anc 1249 . . 3  |-  ( ph  ->  ( Y  .x.  Z
)  e.  B )
253, 10, 4, 17grpsubval 13248 . . 3  |-  ( ( ( X  .x.  Z
)  e.  B  /\  ( Y  .x.  Z )  e.  B )  -> 
( ( X  .x.  Z )  .-  ( Y  .x.  Z ) )  =  ( ( X 
.x.  Z ) ( +g  `  R ) ( ( invg `  R ) `  ( Y  .x.  Z ) ) ) )
2622, 24, 25syl2anc 411 . 2  |-  ( ph  ->  ( ( X  .x.  Z )  .-  ( Y  .x.  Z ) )  =  ( ( X 
.x.  Z ) ( +g  `  R ) ( ( invg `  R ) `  ( Y  .x.  Z ) ) ) )
2716, 20, 263eqtr4d 2239 1  |-  ( ph  ->  ( ( X  .-  Y )  .x.  Z
)  =  ( ( X  .x.  Z ) 
.-  ( Y  .x.  Z ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2167   ` cfv 5259  (class class class)co 5925   Basecbs 12703   +g cplusg 12780   .rcmulr 12781   Grpcgrp 13202   invgcminusg 13203   -gcsg 13204  Rngcrng 13564
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-pre-ltirr 8008  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-pnf 8080  df-mnf 8081  df-ltxr 8083  df-inn 9008  df-2 9066  df-3 9067  df-ndx 12706  df-slot 12707  df-base 12709  df-sets 12710  df-plusg 12793  df-mulr 12794  df-0g 12960  df-mgm 13058  df-sgrp 13104  df-mnd 13119  df-grp 13205  df-minusg 13206  df-sbg 13207  df-abl 13493  df-mgp 13553  df-rng 13565
This theorem is referenced by:  2idlcpblrng  14155
  Copyright terms: Public domain W3C validator