ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rngsubdir Unicode version

Theorem rngsubdir 13714
Description: Ring multiplication distributes over subtraction. (subdir 8458 analog.) (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.) Generalization of ringsubdir 13819. (Revised by AV, 23-Feb-2025.)
Hypotheses
Ref Expression
rngsubdi.b  |-  B  =  ( Base `  R
)
rngsubdi.t  |-  .x.  =  ( .r `  R )
rngsubdi.m  |-  .-  =  ( -g `  R )
rngsubdi.r  |-  ( ph  ->  R  e. Rng )
rngsubdi.x  |-  ( ph  ->  X  e.  B )
rngsubdi.y  |-  ( ph  ->  Y  e.  B )
rngsubdi.z  |-  ( ph  ->  Z  e.  B )
Assertion
Ref Expression
rngsubdir  |-  ( ph  ->  ( ( X  .-  Y )  .x.  Z
)  =  ( ( X  .x.  Z ) 
.-  ( Y  .x.  Z ) ) )

Proof of Theorem rngsubdir
StepHypRef Expression
1 rngsubdi.r . . . 4  |-  ( ph  ->  R  e. Rng )
2 rngsubdi.x . . . 4  |-  ( ph  ->  X  e.  B )
3 rngsubdi.b . . . . 5  |-  B  =  ( Base `  R
)
4 eqid 2205 . . . . 5  |-  ( invg `  R )  =  ( invg `  R )
5 rnggrp 13700 . . . . . 6  |-  ( R  e. Rng  ->  R  e.  Grp )
61, 5syl 14 . . . . 5  |-  ( ph  ->  R  e.  Grp )
7 rngsubdi.y . . . . 5  |-  ( ph  ->  Y  e.  B )
83, 4, 6, 7grpinvcld 13381 . . . 4  |-  ( ph  ->  ( ( invg `  R ) `  Y
)  e.  B )
9 rngsubdi.z . . . 4  |-  ( ph  ->  Z  e.  B )
10 eqid 2205 . . . . 5  |-  ( +g  `  R )  =  ( +g  `  R )
11 rngsubdi.t . . . . 5  |-  .x.  =  ( .r `  R )
123, 10, 11rngdir 13703 . . . 4  |-  ( ( R  e. Rng  /\  ( X  e.  B  /\  ( ( invg `  R ) `  Y
)  e.  B  /\  Z  e.  B )
)  ->  ( ( X ( +g  `  R
) ( ( invg `  R ) `
 Y ) ) 
.x.  Z )  =  ( ( X  .x.  Z ) ( +g  `  R ) ( ( ( invg `  R ) `  Y
)  .x.  Z )
) )
131, 2, 8, 9, 12syl13anc 1252 . . 3  |-  ( ph  ->  ( ( X ( +g  `  R ) ( ( invg `  R ) `  Y
) )  .x.  Z
)  =  ( ( X  .x.  Z ) ( +g  `  R
) ( ( ( invg `  R
) `  Y )  .x.  Z ) ) )
143, 11, 4, 1, 7, 9rngmneg1 13709 . . . 4  |-  ( ph  ->  ( ( ( invg `  R ) `
 Y )  .x.  Z )  =  ( ( invg `  R ) `  ( Y  .x.  Z ) ) )
1514oveq2d 5960 . . 3  |-  ( ph  ->  ( ( X  .x.  Z ) ( +g  `  R ) ( ( ( invg `  R ) `  Y
)  .x.  Z )
)  =  ( ( X  .x.  Z ) ( +g  `  R
) ( ( invg `  R ) `
 ( Y  .x.  Z ) ) ) )
1613, 15eqtrd 2238 . 2  |-  ( ph  ->  ( ( X ( +g  `  R ) ( ( invg `  R ) `  Y
) )  .x.  Z
)  =  ( ( X  .x.  Z ) ( +g  `  R
) ( ( invg `  R ) `
 ( Y  .x.  Z ) ) ) )
17 rngsubdi.m . . . . 5  |-  .-  =  ( -g `  R )
183, 10, 4, 17grpsubval 13378 . . . 4  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  ( X  .-  Y
)  =  ( X ( +g  `  R
) ( ( invg `  R ) `
 Y ) ) )
192, 7, 18syl2anc 411 . . 3  |-  ( ph  ->  ( X  .-  Y
)  =  ( X ( +g  `  R
) ( ( invg `  R ) `
 Y ) ) )
2019oveq1d 5959 . 2  |-  ( ph  ->  ( ( X  .-  Y )  .x.  Z
)  =  ( ( X ( +g  `  R
) ( ( invg `  R ) `
 Y ) ) 
.x.  Z ) )
213, 11rngcl 13706 . . . 4  |-  ( ( R  e. Rng  /\  X  e.  B  /\  Z  e.  B )  ->  ( X  .x.  Z )  e.  B )
221, 2, 9, 21syl3anc 1250 . . 3  |-  ( ph  ->  ( X  .x.  Z
)  e.  B )
233, 11rngcl 13706 . . . 4  |-  ( ( R  e. Rng  /\  Y  e.  B  /\  Z  e.  B )  ->  ( Y  .x.  Z )  e.  B )
241, 7, 9, 23syl3anc 1250 . . 3  |-  ( ph  ->  ( Y  .x.  Z
)  e.  B )
253, 10, 4, 17grpsubval 13378 . . 3  |-  ( ( ( X  .x.  Z
)  e.  B  /\  ( Y  .x.  Z )  e.  B )  -> 
( ( X  .x.  Z )  .-  ( Y  .x.  Z ) )  =  ( ( X 
.x.  Z ) ( +g  `  R ) ( ( invg `  R ) `  ( Y  .x.  Z ) ) ) )
2622, 24, 25syl2anc 411 . 2  |-  ( ph  ->  ( ( X  .x.  Z )  .-  ( Y  .x.  Z ) )  =  ( ( X 
.x.  Z ) ( +g  `  R ) ( ( invg `  R ) `  ( Y  .x.  Z ) ) ) )
2716, 20, 263eqtr4d 2248 1  |-  ( ph  ->  ( ( X  .-  Y )  .x.  Z
)  =  ( ( X  .x.  Z ) 
.-  ( Y  .x.  Z ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2176   ` cfv 5271  (class class class)co 5944   Basecbs 12832   +g cplusg 12909   .rcmulr 12910   Grpcgrp 13332   invgcminusg 13333   -gcsg 13334  Rngcrng 13694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-pre-ltirr 8037  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-pnf 8109  df-mnf 8110  df-ltxr 8112  df-inn 9037  df-2 9095  df-3 9096  df-ndx 12835  df-slot 12836  df-base 12838  df-sets 12839  df-plusg 12922  df-mulr 12923  df-0g 13090  df-mgm 13188  df-sgrp 13234  df-mnd 13249  df-grp 13335  df-minusg 13336  df-sbg 13337  df-abl 13623  df-mgp 13683  df-rng 13695
This theorem is referenced by:  2idlcpblrng  14285
  Copyright terms: Public domain W3C validator