ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  srgpcomppsc Unicode version

Theorem srgpcomppsc 13672
Description: If two elements of a semiring commute, they also commute if the elements are raised to a higher power and a scalar multiplication is involved. (Contributed by AV, 23-Aug-2019.)
Hypotheses
Ref Expression
srgpcomp.s  |-  S  =  ( Base `  R
)
srgpcomp.m  |-  .X.  =  ( .r `  R )
srgpcomp.g  |-  G  =  (mulGrp `  R )
srgpcomp.e  |-  .^  =  (.g
`  G )
srgpcomp.r  |-  ( ph  ->  R  e. SRing )
srgpcomp.a  |-  ( ph  ->  A  e.  S )
srgpcomp.b  |-  ( ph  ->  B  e.  S )
srgpcomp.k  |-  ( ph  ->  K  e.  NN0 )
srgpcomp.c  |-  ( ph  ->  ( A  .X.  B
)  =  ( B 
.X.  A ) )
srgpcompp.n  |-  ( ph  ->  N  e.  NN0 )
srgpcomppsc.t  |-  .x.  =  (.g
`  R )
srgpcomppsc.c  |-  ( ph  ->  C  e.  NN0 )
Assertion
Ref Expression
srgpcomppsc  |-  ( ph  ->  ( ( C  .x.  ( ( N  .^  A )  .X.  ( K  .^  B ) ) )  .X.  A )  =  ( C  .x.  ( ( ( N  +  1 )  .^  A )  .X.  ( K  .^  B ) ) ) )

Proof of Theorem srgpcomppsc
StepHypRef Expression
1 srgpcomp.r . . . . 5  |-  ( ph  ->  R  e. SRing )
2 srgpcomppsc.c . . . . 5  |-  ( ph  ->  C  e.  NN0 )
3 srgpcomp.g . . . . . . . . 9  |-  G  =  (mulGrp `  R )
43srgmgp 13648 . . . . . . . 8  |-  ( R  e. SRing  ->  G  e.  Mnd )
51, 4syl 14 . . . . . . 7  |-  ( ph  ->  G  e.  Mnd )
6 srgpcompp.n . . . . . . 7  |-  ( ph  ->  N  e.  NN0 )
7 srgpcomp.a . . . . . . . 8  |-  ( ph  ->  A  e.  S )
8 srgpcomp.s . . . . . . . . . 10  |-  S  =  ( Base `  R
)
93, 8mgpbasg 13606 . . . . . . . . 9  |-  ( R  e. SRing  ->  S  =  (
Base `  G )
)
101, 9syl 14 . . . . . . . 8  |-  ( ph  ->  S  =  ( Base `  G ) )
117, 10eleqtrd 2283 . . . . . . 7  |-  ( ph  ->  A  e.  ( Base `  G ) )
12 eqid 2204 . . . . . . . 8  |-  ( Base `  G )  =  (
Base `  G )
13 srgpcomp.e . . . . . . . 8  |-  .^  =  (.g
`  G )
1412, 13mulgnn0cl 13392 . . . . . . 7  |-  ( ( G  e.  Mnd  /\  N  e.  NN0  /\  A  e.  ( Base `  G
) )  ->  ( N  .^  A )  e.  ( Base `  G
) )
155, 6, 11, 14syl3anc 1249 . . . . . 6  |-  ( ph  ->  ( N  .^  A
)  e.  ( Base `  G ) )
1615, 10eleqtrrd 2284 . . . . 5  |-  ( ph  ->  ( N  .^  A
)  e.  S )
17 srgpcomp.k . . . . . . 7  |-  ( ph  ->  K  e.  NN0 )
18 srgpcomp.b . . . . . . . 8  |-  ( ph  ->  B  e.  S )
1918, 10eleqtrd 2283 . . . . . . 7  |-  ( ph  ->  B  e.  ( Base `  G ) )
2012, 13mulgnn0cl 13392 . . . . . . 7  |-  ( ( G  e.  Mnd  /\  K  e.  NN0  /\  B  e.  ( Base `  G
) )  ->  ( K  .^  B )  e.  ( Base `  G
) )
215, 17, 19, 20syl3anc 1249 . . . . . 6  |-  ( ph  ->  ( K  .^  B
)  e.  ( Base `  G ) )
2221, 10eleqtrrd 2284 . . . . 5  |-  ( ph  ->  ( K  .^  B
)  e.  S )
23 srgpcomppsc.t . . . . . . 7  |-  .x.  =  (.g
`  R )
24 srgpcomp.m . . . . . . 7  |-  .X.  =  ( .r `  R )
258, 23, 24srgmulgass 13669 . . . . . 6  |-  ( ( R  e. SRing  /\  ( C  e.  NN0  /\  ( N  .^  A )  e.  S  /\  ( K 
.^  B )  e.  S ) )  -> 
( ( C  .x.  ( N  .^  A ) )  .X.  ( K  .^  B ) )  =  ( C  .x.  (
( N  .^  A
)  .X.  ( K  .^  B ) ) ) )
2625eqcomd 2210 . . . . 5  |-  ( ( R  e. SRing  /\  ( C  e.  NN0  /\  ( N  .^  A )  e.  S  /\  ( K 
.^  B )  e.  S ) )  -> 
( C  .x.  (
( N  .^  A
)  .X.  ( K  .^  B ) ) )  =  ( ( C 
.x.  ( N  .^  A ) )  .X.  ( K  .^  B ) ) )
271, 2, 16, 22, 26syl13anc 1251 . . . 4  |-  ( ph  ->  ( C  .x.  (
( N  .^  A
)  .X.  ( K  .^  B ) ) )  =  ( ( C 
.x.  ( N  .^  A ) )  .X.  ( K  .^  B ) ) )
2827oveq1d 5949 . . 3  |-  ( ph  ->  ( ( C  .x.  ( ( N  .^  A )  .X.  ( K  .^  B ) ) )  .X.  A )  =  ( ( ( C  .x.  ( N 
.^  A ) ) 
.X.  ( K  .^  B ) )  .X.  A ) )
29 srgmnd 13647 . . . . . 6  |-  ( R  e. SRing  ->  R  e.  Mnd )
301, 29syl 14 . . . . 5  |-  ( ph  ->  R  e.  Mnd )
318, 23mulgnn0cl 13392 . . . . 5  |-  ( ( R  e.  Mnd  /\  C  e.  NN0  /\  ( N  .^  A )  e.  S )  ->  ( C  .x.  ( N  .^  A ) )  e.  S )
3230, 2, 16, 31syl3anc 1249 . . . 4  |-  ( ph  ->  ( C  .x.  ( N  .^  A ) )  e.  S )
338, 24srgass 13651 . . . 4  |-  ( ( R  e. SRing  /\  (
( C  .x.  ( N  .^  A ) )  e.  S  /\  ( K  .^  B )  e.  S  /\  A  e.  S ) )  -> 
( ( ( C 
.x.  ( N  .^  A ) )  .X.  ( K  .^  B ) )  .X.  A )  =  ( ( C 
.x.  ( N  .^  A ) )  .X.  ( ( K  .^  B )  .X.  A
) ) )
341, 32, 22, 7, 33syl13anc 1251 . . 3  |-  ( ph  ->  ( ( ( C 
.x.  ( N  .^  A ) )  .X.  ( K  .^  B ) )  .X.  A )  =  ( ( C 
.x.  ( N  .^  A ) )  .X.  ( ( K  .^  B )  .X.  A
) ) )
3528, 34eqtrd 2237 . 2  |-  ( ph  ->  ( ( C  .x.  ( ( N  .^  A )  .X.  ( K  .^  B ) ) )  .X.  A )  =  ( ( C 
.x.  ( N  .^  A ) )  .X.  ( ( K  .^  B )  .X.  A
) ) )
368, 24srgcl 13650 . . . . 5  |-  ( ( R  e. SRing  /\  ( K  .^  B )  e.  S  /\  A  e.  S )  ->  (
( K  .^  B
)  .X.  A )  e.  S )
371, 22, 7, 36syl3anc 1249 . . . 4  |-  ( ph  ->  ( ( K  .^  B )  .X.  A
)  e.  S )
388, 23, 24srgmulgass 13669 . . . 4  |-  ( ( R  e. SRing  /\  ( C  e.  NN0  /\  ( N  .^  A )  e.  S  /\  ( ( K  .^  B )  .X.  A )  e.  S
) )  ->  (
( C  .x.  ( N  .^  A ) ) 
.X.  ( ( K 
.^  B )  .X.  A ) )  =  ( C  .x.  (
( N  .^  A
)  .X.  ( ( K  .^  B )  .X.  A ) ) ) )
391, 2, 16, 37, 38syl13anc 1251 . . 3  |-  ( ph  ->  ( ( C  .x.  ( N  .^  A ) )  .X.  ( ( K  .^  B )  .X.  A ) )  =  ( C  .x.  (
( N  .^  A
)  .X.  ( ( K  .^  B )  .X.  A ) ) ) )
408, 24srgass 13651 . . . . . 6  |-  ( ( R  e. SRing  /\  (
( N  .^  A
)  e.  S  /\  ( K  .^  B )  e.  S  /\  A  e.  S ) )  -> 
( ( ( N 
.^  A )  .X.  ( K  .^  B ) )  .X.  A )  =  ( ( N 
.^  A )  .X.  ( ( K  .^  B )  .X.  A
) ) )
411, 16, 22, 7, 40syl13anc 1251 . . . . 5  |-  ( ph  ->  ( ( ( N 
.^  A )  .X.  ( K  .^  B ) )  .X.  A )  =  ( ( N 
.^  A )  .X.  ( ( K  .^  B )  .X.  A
) ) )
4241eqcomd 2210 . . . 4  |-  ( ph  ->  ( ( N  .^  A )  .X.  (
( K  .^  B
)  .X.  A )
)  =  ( ( ( N  .^  A
)  .X.  ( K  .^  B ) )  .X.  A ) )
4342oveq2d 5950 . . 3  |-  ( ph  ->  ( C  .x.  (
( N  .^  A
)  .X.  ( ( K  .^  B )  .X.  A ) ) )  =  ( C  .x.  ( ( ( N 
.^  A )  .X.  ( K  .^  B ) )  .X.  A )
) )
4439, 43eqtrd 2237 . 2  |-  ( ph  ->  ( ( C  .x.  ( N  .^  A ) )  .X.  ( ( K  .^  B )  .X.  A ) )  =  ( C  .x.  (
( ( N  .^  A )  .X.  ( K  .^  B ) ) 
.X.  A ) ) )
45 srgpcomp.c . . . 4  |-  ( ph  ->  ( A  .X.  B
)  =  ( B 
.X.  A ) )
468, 24, 3, 13, 1, 7, 18, 17, 45, 6srgpcompp 13671 . . 3  |-  ( ph  ->  ( ( ( N 
.^  A )  .X.  ( K  .^  B ) )  .X.  A )  =  ( ( ( N  +  1 ) 
.^  A )  .X.  ( K  .^  B ) ) )
4746oveq2d 5950 . 2  |-  ( ph  ->  ( C  .x.  (
( ( N  .^  A )  .X.  ( K  .^  B ) ) 
.X.  A ) )  =  ( C  .x.  ( ( ( N  +  1 )  .^  A )  .X.  ( K  .^  B ) ) ) )
4835, 44, 473eqtrd 2241 1  |-  ( ph  ->  ( ( C  .x.  ( ( N  .^  A )  .X.  ( K  .^  B ) ) )  .X.  A )  =  ( C  .x.  ( ( ( N  +  1 )  .^  A )  .X.  ( K  .^  B ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1372    e. wcel 2175   ` cfv 5268  (class class class)co 5934   1c1 7908    + caddc 7910   NN0cn0 9277   Basecbs 12751   .rcmulr 12829   Mndcmnd 13166  .gcmg 13373  mulGrpcmgp 13600  SRingcsrg 13643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-iinf 4634  ax-cnex 7998  ax-resscn 7999  ax-1cn 8000  ax-1re 8001  ax-icn 8002  ax-addcl 8003  ax-addrcl 8004  ax-mulcl 8005  ax-addcom 8007  ax-addass 8009  ax-distr 8011  ax-i2m1 8012  ax-0lt1 8013  ax-0id 8015  ax-rnegex 8016  ax-cnre 8018  ax-pre-ltirr 8019  ax-pre-ltwlin 8020  ax-pre-lttrn 8021  ax-pre-ltadd 8023
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4338  df-iord 4411  df-on 4413  df-ilim 4414  df-suc 4416  df-iom 4637  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-riota 5889  df-ov 5937  df-oprab 5938  df-mpo 5939  df-1st 6216  df-2nd 6217  df-recs 6381  df-frec 6467  df-pnf 8091  df-mnf 8092  df-xr 8093  df-ltxr 8094  df-le 8095  df-sub 8227  df-neg 8228  df-inn 9019  df-2 9077  df-3 9078  df-n0 9278  df-z 9355  df-uz 9631  df-seqfrec 10574  df-ndx 12754  df-slot 12755  df-base 12757  df-sets 12758  df-plusg 12841  df-mulr 12842  df-0g 13008  df-mgm 13106  df-sgrp 13152  df-mnd 13167  df-minusg 13254  df-mulg 13374  df-cmn 13540  df-mgp 13601  df-ur 13640  df-srg 13644
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator