ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  srgpcomppsc Unicode version

Theorem srgpcomppsc 13829
Description: If two elements of a semiring commute, they also commute if the elements are raised to a higher power and a scalar multiplication is involved. (Contributed by AV, 23-Aug-2019.)
Hypotheses
Ref Expression
srgpcomp.s  |-  S  =  ( Base `  R
)
srgpcomp.m  |-  .X.  =  ( .r `  R )
srgpcomp.g  |-  G  =  (mulGrp `  R )
srgpcomp.e  |-  .^  =  (.g
`  G )
srgpcomp.r  |-  ( ph  ->  R  e. SRing )
srgpcomp.a  |-  ( ph  ->  A  e.  S )
srgpcomp.b  |-  ( ph  ->  B  e.  S )
srgpcomp.k  |-  ( ph  ->  K  e.  NN0 )
srgpcomp.c  |-  ( ph  ->  ( A  .X.  B
)  =  ( B 
.X.  A ) )
srgpcompp.n  |-  ( ph  ->  N  e.  NN0 )
srgpcomppsc.t  |-  .x.  =  (.g
`  R )
srgpcomppsc.c  |-  ( ph  ->  C  e.  NN0 )
Assertion
Ref Expression
srgpcomppsc  |-  ( ph  ->  ( ( C  .x.  ( ( N  .^  A )  .X.  ( K  .^  B ) ) )  .X.  A )  =  ( C  .x.  ( ( ( N  +  1 )  .^  A )  .X.  ( K  .^  B ) ) ) )

Proof of Theorem srgpcomppsc
StepHypRef Expression
1 srgpcomp.r . . . . 5  |-  ( ph  ->  R  e. SRing )
2 srgpcomppsc.c . . . . 5  |-  ( ph  ->  C  e.  NN0 )
3 srgpcomp.g . . . . . . . . 9  |-  G  =  (mulGrp `  R )
43srgmgp 13805 . . . . . . . 8  |-  ( R  e. SRing  ->  G  e.  Mnd )
51, 4syl 14 . . . . . . 7  |-  ( ph  ->  G  e.  Mnd )
6 srgpcompp.n . . . . . . 7  |-  ( ph  ->  N  e.  NN0 )
7 srgpcomp.a . . . . . . . 8  |-  ( ph  ->  A  e.  S )
8 srgpcomp.s . . . . . . . . . 10  |-  S  =  ( Base `  R
)
93, 8mgpbasg 13763 . . . . . . . . 9  |-  ( R  e. SRing  ->  S  =  (
Base `  G )
)
101, 9syl 14 . . . . . . . 8  |-  ( ph  ->  S  =  ( Base `  G ) )
117, 10eleqtrd 2285 . . . . . . 7  |-  ( ph  ->  A  e.  ( Base `  G ) )
12 eqid 2206 . . . . . . . 8  |-  ( Base `  G )  =  (
Base `  G )
13 srgpcomp.e . . . . . . . 8  |-  .^  =  (.g
`  G )
1412, 13mulgnn0cl 13549 . . . . . . 7  |-  ( ( G  e.  Mnd  /\  N  e.  NN0  /\  A  e.  ( Base `  G
) )  ->  ( N  .^  A )  e.  ( Base `  G
) )
155, 6, 11, 14syl3anc 1250 . . . . . 6  |-  ( ph  ->  ( N  .^  A
)  e.  ( Base `  G ) )
1615, 10eleqtrrd 2286 . . . . 5  |-  ( ph  ->  ( N  .^  A
)  e.  S )
17 srgpcomp.k . . . . . . 7  |-  ( ph  ->  K  e.  NN0 )
18 srgpcomp.b . . . . . . . 8  |-  ( ph  ->  B  e.  S )
1918, 10eleqtrd 2285 . . . . . . 7  |-  ( ph  ->  B  e.  ( Base `  G ) )
2012, 13mulgnn0cl 13549 . . . . . . 7  |-  ( ( G  e.  Mnd  /\  K  e.  NN0  /\  B  e.  ( Base `  G
) )  ->  ( K  .^  B )  e.  ( Base `  G
) )
215, 17, 19, 20syl3anc 1250 . . . . . 6  |-  ( ph  ->  ( K  .^  B
)  e.  ( Base `  G ) )
2221, 10eleqtrrd 2286 . . . . 5  |-  ( ph  ->  ( K  .^  B
)  e.  S )
23 srgpcomppsc.t . . . . . . 7  |-  .x.  =  (.g
`  R )
24 srgpcomp.m . . . . . . 7  |-  .X.  =  ( .r `  R )
258, 23, 24srgmulgass 13826 . . . . . 6  |-  ( ( R  e. SRing  /\  ( C  e.  NN0  /\  ( N  .^  A )  e.  S  /\  ( K 
.^  B )  e.  S ) )  -> 
( ( C  .x.  ( N  .^  A ) )  .X.  ( K  .^  B ) )  =  ( C  .x.  (
( N  .^  A
)  .X.  ( K  .^  B ) ) ) )
2625eqcomd 2212 . . . . 5  |-  ( ( R  e. SRing  /\  ( C  e.  NN0  /\  ( N  .^  A )  e.  S  /\  ( K 
.^  B )  e.  S ) )  -> 
( C  .x.  (
( N  .^  A
)  .X.  ( K  .^  B ) ) )  =  ( ( C 
.x.  ( N  .^  A ) )  .X.  ( K  .^  B ) ) )
271, 2, 16, 22, 26syl13anc 1252 . . . 4  |-  ( ph  ->  ( C  .x.  (
( N  .^  A
)  .X.  ( K  .^  B ) ) )  =  ( ( C 
.x.  ( N  .^  A ) )  .X.  ( K  .^  B ) ) )
2827oveq1d 5972 . . 3  |-  ( ph  ->  ( ( C  .x.  ( ( N  .^  A )  .X.  ( K  .^  B ) ) )  .X.  A )  =  ( ( ( C  .x.  ( N 
.^  A ) ) 
.X.  ( K  .^  B ) )  .X.  A ) )
29 srgmnd 13804 . . . . . 6  |-  ( R  e. SRing  ->  R  e.  Mnd )
301, 29syl 14 . . . . 5  |-  ( ph  ->  R  e.  Mnd )
318, 23mulgnn0cl 13549 . . . . 5  |-  ( ( R  e.  Mnd  /\  C  e.  NN0  /\  ( N  .^  A )  e.  S )  ->  ( C  .x.  ( N  .^  A ) )  e.  S )
3230, 2, 16, 31syl3anc 1250 . . . 4  |-  ( ph  ->  ( C  .x.  ( N  .^  A ) )  e.  S )
338, 24srgass 13808 . . . 4  |-  ( ( R  e. SRing  /\  (
( C  .x.  ( N  .^  A ) )  e.  S  /\  ( K  .^  B )  e.  S  /\  A  e.  S ) )  -> 
( ( ( C 
.x.  ( N  .^  A ) )  .X.  ( K  .^  B ) )  .X.  A )  =  ( ( C 
.x.  ( N  .^  A ) )  .X.  ( ( K  .^  B )  .X.  A
) ) )
341, 32, 22, 7, 33syl13anc 1252 . . 3  |-  ( ph  ->  ( ( ( C 
.x.  ( N  .^  A ) )  .X.  ( K  .^  B ) )  .X.  A )  =  ( ( C 
.x.  ( N  .^  A ) )  .X.  ( ( K  .^  B )  .X.  A
) ) )
3528, 34eqtrd 2239 . 2  |-  ( ph  ->  ( ( C  .x.  ( ( N  .^  A )  .X.  ( K  .^  B ) ) )  .X.  A )  =  ( ( C 
.x.  ( N  .^  A ) )  .X.  ( ( K  .^  B )  .X.  A
) ) )
368, 24srgcl 13807 . . . . 5  |-  ( ( R  e. SRing  /\  ( K  .^  B )  e.  S  /\  A  e.  S )  ->  (
( K  .^  B
)  .X.  A )  e.  S )
371, 22, 7, 36syl3anc 1250 . . . 4  |-  ( ph  ->  ( ( K  .^  B )  .X.  A
)  e.  S )
388, 23, 24srgmulgass 13826 . . . 4  |-  ( ( R  e. SRing  /\  ( C  e.  NN0  /\  ( N  .^  A )  e.  S  /\  ( ( K  .^  B )  .X.  A )  e.  S
) )  ->  (
( C  .x.  ( N  .^  A ) ) 
.X.  ( ( K 
.^  B )  .X.  A ) )  =  ( C  .x.  (
( N  .^  A
)  .X.  ( ( K  .^  B )  .X.  A ) ) ) )
391, 2, 16, 37, 38syl13anc 1252 . . 3  |-  ( ph  ->  ( ( C  .x.  ( N  .^  A ) )  .X.  ( ( K  .^  B )  .X.  A ) )  =  ( C  .x.  (
( N  .^  A
)  .X.  ( ( K  .^  B )  .X.  A ) ) ) )
408, 24srgass 13808 . . . . . 6  |-  ( ( R  e. SRing  /\  (
( N  .^  A
)  e.  S  /\  ( K  .^  B )  e.  S  /\  A  e.  S ) )  -> 
( ( ( N 
.^  A )  .X.  ( K  .^  B ) )  .X.  A )  =  ( ( N 
.^  A )  .X.  ( ( K  .^  B )  .X.  A
) ) )
411, 16, 22, 7, 40syl13anc 1252 . . . . 5  |-  ( ph  ->  ( ( ( N 
.^  A )  .X.  ( K  .^  B ) )  .X.  A )  =  ( ( N 
.^  A )  .X.  ( ( K  .^  B )  .X.  A
) ) )
4241eqcomd 2212 . . . 4  |-  ( ph  ->  ( ( N  .^  A )  .X.  (
( K  .^  B
)  .X.  A )
)  =  ( ( ( N  .^  A
)  .X.  ( K  .^  B ) )  .X.  A ) )
4342oveq2d 5973 . . 3  |-  ( ph  ->  ( C  .x.  (
( N  .^  A
)  .X.  ( ( K  .^  B )  .X.  A ) ) )  =  ( C  .x.  ( ( ( N 
.^  A )  .X.  ( K  .^  B ) )  .X.  A )
) )
4439, 43eqtrd 2239 . 2  |-  ( ph  ->  ( ( C  .x.  ( N  .^  A ) )  .X.  ( ( K  .^  B )  .X.  A ) )  =  ( C  .x.  (
( ( N  .^  A )  .X.  ( K  .^  B ) ) 
.X.  A ) ) )
45 srgpcomp.c . . . 4  |-  ( ph  ->  ( A  .X.  B
)  =  ( B 
.X.  A ) )
468, 24, 3, 13, 1, 7, 18, 17, 45, 6srgpcompp 13828 . . 3  |-  ( ph  ->  ( ( ( N 
.^  A )  .X.  ( K  .^  B ) )  .X.  A )  =  ( ( ( N  +  1 ) 
.^  A )  .X.  ( K  .^  B ) ) )
4746oveq2d 5973 . 2  |-  ( ph  ->  ( C  .x.  (
( ( N  .^  A )  .X.  ( K  .^  B ) ) 
.X.  A ) )  =  ( C  .x.  ( ( ( N  +  1 )  .^  A )  .X.  ( K  .^  B ) ) ) )
4835, 44, 473eqtrd 2243 1  |-  ( ph  ->  ( ( C  .x.  ( ( N  .^  A )  .X.  ( K  .^  B ) ) )  .X.  A )  =  ( C  .x.  ( ( ( N  +  1 )  .^  A )  .X.  ( K  .^  B ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373    e. wcel 2177   ` cfv 5280  (class class class)co 5957   1c1 7946    + caddc 7948   NN0cn0 9315   Basecbs 12907   .rcmulr 12985   Mndcmnd 13323  .gcmg 13530  mulGrpcmgp 13757  SRingcsrg 13800
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-iinf 4644  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-addcom 8045  ax-addass 8047  ax-distr 8049  ax-i2m1 8050  ax-0lt1 8051  ax-0id 8053  ax-rnegex 8054  ax-cnre 8056  ax-pre-ltirr 8057  ax-pre-ltwlin 8058  ax-pre-lttrn 8059  ax-pre-ltadd 8061
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-id 4348  df-iord 4421  df-on 4423  df-ilim 4424  df-suc 4426  df-iom 4647  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-recs 6404  df-frec 6490  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132  df-le 8133  df-sub 8265  df-neg 8266  df-inn 9057  df-2 9115  df-3 9116  df-n0 9316  df-z 9393  df-uz 9669  df-seqfrec 10615  df-ndx 12910  df-slot 12911  df-base 12913  df-sets 12914  df-plusg 12997  df-mulr 12998  df-0g 13165  df-mgm 13263  df-sgrp 13309  df-mnd 13324  df-minusg 13411  df-mulg 13531  df-cmn 13697  df-mgp 13758  df-ur 13797  df-srg 13801
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator