ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  srgpcomppsc Unicode version

Theorem srgpcomppsc 13950
Description: If two elements of a semiring commute, they also commute if the elements are raised to a higher power and a scalar multiplication is involved. (Contributed by AV, 23-Aug-2019.)
Hypotheses
Ref Expression
srgpcomp.s  |-  S  =  ( Base `  R
)
srgpcomp.m  |-  .X.  =  ( .r `  R )
srgpcomp.g  |-  G  =  (mulGrp `  R )
srgpcomp.e  |-  .^  =  (.g
`  G )
srgpcomp.r  |-  ( ph  ->  R  e. SRing )
srgpcomp.a  |-  ( ph  ->  A  e.  S )
srgpcomp.b  |-  ( ph  ->  B  e.  S )
srgpcomp.k  |-  ( ph  ->  K  e.  NN0 )
srgpcomp.c  |-  ( ph  ->  ( A  .X.  B
)  =  ( B 
.X.  A ) )
srgpcompp.n  |-  ( ph  ->  N  e.  NN0 )
srgpcomppsc.t  |-  .x.  =  (.g
`  R )
srgpcomppsc.c  |-  ( ph  ->  C  e.  NN0 )
Assertion
Ref Expression
srgpcomppsc  |-  ( ph  ->  ( ( C  .x.  ( ( N  .^  A )  .X.  ( K  .^  B ) ) )  .X.  A )  =  ( C  .x.  ( ( ( N  +  1 )  .^  A )  .X.  ( K  .^  B ) ) ) )

Proof of Theorem srgpcomppsc
StepHypRef Expression
1 srgpcomp.r . . . . 5  |-  ( ph  ->  R  e. SRing )
2 srgpcomppsc.c . . . . 5  |-  ( ph  ->  C  e.  NN0 )
3 srgpcomp.g . . . . . . . . 9  |-  G  =  (mulGrp `  R )
43srgmgp 13926 . . . . . . . 8  |-  ( R  e. SRing  ->  G  e.  Mnd )
51, 4syl 14 . . . . . . 7  |-  ( ph  ->  G  e.  Mnd )
6 srgpcompp.n . . . . . . 7  |-  ( ph  ->  N  e.  NN0 )
7 srgpcomp.a . . . . . . . 8  |-  ( ph  ->  A  e.  S )
8 srgpcomp.s . . . . . . . . . 10  |-  S  =  ( Base `  R
)
93, 8mgpbasg 13884 . . . . . . . . 9  |-  ( R  e. SRing  ->  S  =  (
Base `  G )
)
101, 9syl 14 . . . . . . . 8  |-  ( ph  ->  S  =  ( Base `  G ) )
117, 10eleqtrd 2308 . . . . . . 7  |-  ( ph  ->  A  e.  ( Base `  G ) )
12 eqid 2229 . . . . . . . 8  |-  ( Base `  G )  =  (
Base `  G )
13 srgpcomp.e . . . . . . . 8  |-  .^  =  (.g
`  G )
1412, 13mulgnn0cl 13670 . . . . . . 7  |-  ( ( G  e.  Mnd  /\  N  e.  NN0  /\  A  e.  ( Base `  G
) )  ->  ( N  .^  A )  e.  ( Base `  G
) )
155, 6, 11, 14syl3anc 1271 . . . . . 6  |-  ( ph  ->  ( N  .^  A
)  e.  ( Base `  G ) )
1615, 10eleqtrrd 2309 . . . . 5  |-  ( ph  ->  ( N  .^  A
)  e.  S )
17 srgpcomp.k . . . . . . 7  |-  ( ph  ->  K  e.  NN0 )
18 srgpcomp.b . . . . . . . 8  |-  ( ph  ->  B  e.  S )
1918, 10eleqtrd 2308 . . . . . . 7  |-  ( ph  ->  B  e.  ( Base `  G ) )
2012, 13mulgnn0cl 13670 . . . . . . 7  |-  ( ( G  e.  Mnd  /\  K  e.  NN0  /\  B  e.  ( Base `  G
) )  ->  ( K  .^  B )  e.  ( Base `  G
) )
215, 17, 19, 20syl3anc 1271 . . . . . 6  |-  ( ph  ->  ( K  .^  B
)  e.  ( Base `  G ) )
2221, 10eleqtrrd 2309 . . . . 5  |-  ( ph  ->  ( K  .^  B
)  e.  S )
23 srgpcomppsc.t . . . . . . 7  |-  .x.  =  (.g
`  R )
24 srgpcomp.m . . . . . . 7  |-  .X.  =  ( .r `  R )
258, 23, 24srgmulgass 13947 . . . . . 6  |-  ( ( R  e. SRing  /\  ( C  e.  NN0  /\  ( N  .^  A )  e.  S  /\  ( K 
.^  B )  e.  S ) )  -> 
( ( C  .x.  ( N  .^  A ) )  .X.  ( K  .^  B ) )  =  ( C  .x.  (
( N  .^  A
)  .X.  ( K  .^  B ) ) ) )
2625eqcomd 2235 . . . . 5  |-  ( ( R  e. SRing  /\  ( C  e.  NN0  /\  ( N  .^  A )  e.  S  /\  ( K 
.^  B )  e.  S ) )  -> 
( C  .x.  (
( N  .^  A
)  .X.  ( K  .^  B ) ) )  =  ( ( C 
.x.  ( N  .^  A ) )  .X.  ( K  .^  B ) ) )
271, 2, 16, 22, 26syl13anc 1273 . . . 4  |-  ( ph  ->  ( C  .x.  (
( N  .^  A
)  .X.  ( K  .^  B ) ) )  =  ( ( C 
.x.  ( N  .^  A ) )  .X.  ( K  .^  B ) ) )
2827oveq1d 6015 . . 3  |-  ( ph  ->  ( ( C  .x.  ( ( N  .^  A )  .X.  ( K  .^  B ) ) )  .X.  A )  =  ( ( ( C  .x.  ( N 
.^  A ) ) 
.X.  ( K  .^  B ) )  .X.  A ) )
29 srgmnd 13925 . . . . . 6  |-  ( R  e. SRing  ->  R  e.  Mnd )
301, 29syl 14 . . . . 5  |-  ( ph  ->  R  e.  Mnd )
318, 23mulgnn0cl 13670 . . . . 5  |-  ( ( R  e.  Mnd  /\  C  e.  NN0  /\  ( N  .^  A )  e.  S )  ->  ( C  .x.  ( N  .^  A ) )  e.  S )
3230, 2, 16, 31syl3anc 1271 . . . 4  |-  ( ph  ->  ( C  .x.  ( N  .^  A ) )  e.  S )
338, 24srgass 13929 . . . 4  |-  ( ( R  e. SRing  /\  (
( C  .x.  ( N  .^  A ) )  e.  S  /\  ( K  .^  B )  e.  S  /\  A  e.  S ) )  -> 
( ( ( C 
.x.  ( N  .^  A ) )  .X.  ( K  .^  B ) )  .X.  A )  =  ( ( C 
.x.  ( N  .^  A ) )  .X.  ( ( K  .^  B )  .X.  A
) ) )
341, 32, 22, 7, 33syl13anc 1273 . . 3  |-  ( ph  ->  ( ( ( C 
.x.  ( N  .^  A ) )  .X.  ( K  .^  B ) )  .X.  A )  =  ( ( C 
.x.  ( N  .^  A ) )  .X.  ( ( K  .^  B )  .X.  A
) ) )
3528, 34eqtrd 2262 . 2  |-  ( ph  ->  ( ( C  .x.  ( ( N  .^  A )  .X.  ( K  .^  B ) ) )  .X.  A )  =  ( ( C 
.x.  ( N  .^  A ) )  .X.  ( ( K  .^  B )  .X.  A
) ) )
368, 24srgcl 13928 . . . . 5  |-  ( ( R  e. SRing  /\  ( K  .^  B )  e.  S  /\  A  e.  S )  ->  (
( K  .^  B
)  .X.  A )  e.  S )
371, 22, 7, 36syl3anc 1271 . . . 4  |-  ( ph  ->  ( ( K  .^  B )  .X.  A
)  e.  S )
388, 23, 24srgmulgass 13947 . . . 4  |-  ( ( R  e. SRing  /\  ( C  e.  NN0  /\  ( N  .^  A )  e.  S  /\  ( ( K  .^  B )  .X.  A )  e.  S
) )  ->  (
( C  .x.  ( N  .^  A ) ) 
.X.  ( ( K 
.^  B )  .X.  A ) )  =  ( C  .x.  (
( N  .^  A
)  .X.  ( ( K  .^  B )  .X.  A ) ) ) )
391, 2, 16, 37, 38syl13anc 1273 . . 3  |-  ( ph  ->  ( ( C  .x.  ( N  .^  A ) )  .X.  ( ( K  .^  B )  .X.  A ) )  =  ( C  .x.  (
( N  .^  A
)  .X.  ( ( K  .^  B )  .X.  A ) ) ) )
408, 24srgass 13929 . . . . . 6  |-  ( ( R  e. SRing  /\  (
( N  .^  A
)  e.  S  /\  ( K  .^  B )  e.  S  /\  A  e.  S ) )  -> 
( ( ( N 
.^  A )  .X.  ( K  .^  B ) )  .X.  A )  =  ( ( N 
.^  A )  .X.  ( ( K  .^  B )  .X.  A
) ) )
411, 16, 22, 7, 40syl13anc 1273 . . . . 5  |-  ( ph  ->  ( ( ( N 
.^  A )  .X.  ( K  .^  B ) )  .X.  A )  =  ( ( N 
.^  A )  .X.  ( ( K  .^  B )  .X.  A
) ) )
4241eqcomd 2235 . . . 4  |-  ( ph  ->  ( ( N  .^  A )  .X.  (
( K  .^  B
)  .X.  A )
)  =  ( ( ( N  .^  A
)  .X.  ( K  .^  B ) )  .X.  A ) )
4342oveq2d 6016 . . 3  |-  ( ph  ->  ( C  .x.  (
( N  .^  A
)  .X.  ( ( K  .^  B )  .X.  A ) ) )  =  ( C  .x.  ( ( ( N 
.^  A )  .X.  ( K  .^  B ) )  .X.  A )
) )
4439, 43eqtrd 2262 . 2  |-  ( ph  ->  ( ( C  .x.  ( N  .^  A ) )  .X.  ( ( K  .^  B )  .X.  A ) )  =  ( C  .x.  (
( ( N  .^  A )  .X.  ( K  .^  B ) ) 
.X.  A ) ) )
45 srgpcomp.c . . . 4  |-  ( ph  ->  ( A  .X.  B
)  =  ( B 
.X.  A ) )
468, 24, 3, 13, 1, 7, 18, 17, 45, 6srgpcompp 13949 . . 3  |-  ( ph  ->  ( ( ( N 
.^  A )  .X.  ( K  .^  B ) )  .X.  A )  =  ( ( ( N  +  1 ) 
.^  A )  .X.  ( K  .^  B ) ) )
4746oveq2d 6016 . 2  |-  ( ph  ->  ( C  .x.  (
( ( N  .^  A )  .X.  ( K  .^  B ) ) 
.X.  A ) )  =  ( C  .x.  ( ( ( N  +  1 )  .^  A )  .X.  ( K  .^  B ) ) ) )
4835, 44, 473eqtrd 2266 1  |-  ( ph  ->  ( ( C  .x.  ( ( N  .^  A )  .X.  ( K  .^  B ) ) )  .X.  A )  =  ( C  .x.  ( ( ( N  +  1 )  .^  A )  .X.  ( K  .^  B ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 1002    = wceq 1395    e. wcel 2200   ` cfv 5317  (class class class)co 6000   1c1 7996    + caddc 7998   NN0cn0 9365   Basecbs 13027   .rcmulr 13106   Mndcmnd 13444  .gcmg 13651  mulGrpcmgp 13878  SRingcsrg 13921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-inn 9107  df-2 9165  df-3 9166  df-n0 9366  df-z 9443  df-uz 9719  df-seqfrec 10665  df-ndx 13030  df-slot 13031  df-base 13033  df-sets 13034  df-plusg 13118  df-mulr 13119  df-0g 13286  df-mgm 13384  df-sgrp 13430  df-mnd 13445  df-minusg 13532  df-mulg 13652  df-cmn 13818  df-mgp 13879  df-ur 13918  df-srg 13922
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator