ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  srgpcompp Unicode version

Theorem srgpcompp 13362
Description: If two elements of a semiring commute, they also commute if the elements are raised to a higher power. (Contributed by AV, 23-Aug-2019.)
Hypotheses
Ref Expression
srgpcomp.s  |-  S  =  ( Base `  R
)
srgpcomp.m  |-  .X.  =  ( .r `  R )
srgpcomp.g  |-  G  =  (mulGrp `  R )
srgpcomp.e  |-  .^  =  (.g
`  G )
srgpcomp.r  |-  ( ph  ->  R  e. SRing )
srgpcomp.a  |-  ( ph  ->  A  e.  S )
srgpcomp.b  |-  ( ph  ->  B  e.  S )
srgpcomp.k  |-  ( ph  ->  K  e.  NN0 )
srgpcomp.c  |-  ( ph  ->  ( A  .X.  B
)  =  ( B 
.X.  A ) )
srgpcompp.n  |-  ( ph  ->  N  e.  NN0 )
Assertion
Ref Expression
srgpcompp  |-  ( ph  ->  ( ( ( N 
.^  A )  .X.  ( K  .^  B ) )  .X.  A )  =  ( ( ( N  +  1 ) 
.^  A )  .X.  ( K  .^  B ) ) )

Proof of Theorem srgpcompp
StepHypRef Expression
1 srgpcomp.r . . 3  |-  ( ph  ->  R  e. SRing )
2 srgpcomp.g . . . . . . 7  |-  G  =  (mulGrp `  R )
32srgmgp 13339 . . . . . 6  |-  ( R  e. SRing  ->  G  e.  Mnd )
41, 3syl 14 . . . . 5  |-  ( ph  ->  G  e.  Mnd )
5 srgpcompp.n . . . . 5  |-  ( ph  ->  N  e.  NN0 )
6 srgpcomp.a . . . . . 6  |-  ( ph  ->  A  e.  S )
7 srgpcomp.s . . . . . . . 8  |-  S  =  ( Base `  R
)
82, 7mgpbasg 13297 . . . . . . 7  |-  ( R  e. SRing  ->  S  =  (
Base `  G )
)
91, 8syl 14 . . . . . 6  |-  ( ph  ->  S  =  ( Base `  G ) )
106, 9eleqtrd 2268 . . . . 5  |-  ( ph  ->  A  e.  ( Base `  G ) )
11 eqid 2189 . . . . . 6  |-  ( Base `  G )  =  (
Base `  G )
12 srgpcomp.e . . . . . 6  |-  .^  =  (.g
`  G )
1311, 12mulgnn0cl 13095 . . . . 5  |-  ( ( G  e.  Mnd  /\  N  e.  NN0  /\  A  e.  ( Base `  G
) )  ->  ( N  .^  A )  e.  ( Base `  G
) )
144, 5, 10, 13syl3anc 1249 . . . 4  |-  ( ph  ->  ( N  .^  A
)  e.  ( Base `  G ) )
1514, 9eleqtrrd 2269 . . 3  |-  ( ph  ->  ( N  .^  A
)  e.  S )
16 srgpcomp.k . . . . 5  |-  ( ph  ->  K  e.  NN0 )
17 srgpcomp.b . . . . . 6  |-  ( ph  ->  B  e.  S )
1817, 9eleqtrd 2268 . . . . 5  |-  ( ph  ->  B  e.  ( Base `  G ) )
1911, 12mulgnn0cl 13095 . . . . 5  |-  ( ( G  e.  Mnd  /\  K  e.  NN0  /\  B  e.  ( Base `  G
) )  ->  ( K  .^  B )  e.  ( Base `  G
) )
204, 16, 18, 19syl3anc 1249 . . . 4  |-  ( ph  ->  ( K  .^  B
)  e.  ( Base `  G ) )
2120, 9eleqtrrd 2269 . . 3  |-  ( ph  ->  ( K  .^  B
)  e.  S )
22 srgpcomp.m . . . 4  |-  .X.  =  ( .r `  R )
237, 22srgass 13342 . . 3  |-  ( ( R  e. SRing  /\  (
( N  .^  A
)  e.  S  /\  ( K  .^  B )  e.  S  /\  A  e.  S ) )  -> 
( ( ( N 
.^  A )  .X.  ( K  .^  B ) )  .X.  A )  =  ( ( N 
.^  A )  .X.  ( ( K  .^  B )  .X.  A
) ) )
241, 15, 21, 6, 23syl13anc 1251 . 2  |-  ( ph  ->  ( ( ( N 
.^  A )  .X.  ( K  .^  B ) )  .X.  A )  =  ( ( N 
.^  A )  .X.  ( ( K  .^  B )  .X.  A
) ) )
25 srgpcomp.c . . . . 5  |-  ( ph  ->  ( A  .X.  B
)  =  ( B 
.X.  A ) )
267, 22, 2, 12, 1, 6, 17, 16, 25srgpcomp 13361 . . . 4  |-  ( ph  ->  ( ( K  .^  B )  .X.  A
)  =  ( A 
.X.  ( K  .^  B ) ) )
2726oveq2d 5913 . . 3  |-  ( ph  ->  ( ( N  .^  A )  .X.  (
( K  .^  B
)  .X.  A )
)  =  ( ( N  .^  A )  .X.  ( A  .X.  ( K  .^  B ) ) ) )
287, 22srgass 13342 . . . 4  |-  ( ( R  e. SRing  /\  (
( N  .^  A
)  e.  S  /\  A  e.  S  /\  ( K  .^  B )  e.  S ) )  ->  ( ( ( N  .^  A )  .X.  A )  .X.  ( K  .^  B ) )  =  ( ( N 
.^  A )  .X.  ( A  .X.  ( K 
.^  B ) ) ) )
291, 15, 6, 21, 28syl13anc 1251 . . 3  |-  ( ph  ->  ( ( ( N 
.^  A )  .X.  A )  .X.  ( K  .^  B ) )  =  ( ( N 
.^  A )  .X.  ( A  .X.  ( K 
.^  B ) ) ) )
3027, 29eqtr4d 2225 . 2  |-  ( ph  ->  ( ( N  .^  A )  .X.  (
( K  .^  B
)  .X.  A )
)  =  ( ( ( N  .^  A
)  .X.  A )  .X.  ( K  .^  B
) ) )
312, 22mgpplusgg 13295 . . . . . 6  |-  ( R  e. SRing  ->  .X.  =  ( +g  `  G ) )
321, 31syl 14 . . . . 5  |-  ( ph  ->  .X.  =  ( +g  `  G ) )
3332oveqd 5914 . . . 4  |-  ( ph  ->  ( ( N  .^  A )  .X.  A
)  =  ( ( N  .^  A )
( +g  `  G ) A ) )
34 eqid 2189 . . . . . 6  |-  ( +g  `  G )  =  ( +g  `  G )
3511, 12, 34mulgnn0p1 13090 . . . . 5  |-  ( ( G  e.  Mnd  /\  N  e.  NN0  /\  A  e.  ( Base `  G
) )  ->  (
( N  +  1 )  .^  A )  =  ( ( N 
.^  A ) ( +g  `  G ) A ) )
364, 5, 10, 35syl3anc 1249 . . . 4  |-  ( ph  ->  ( ( N  + 
1 )  .^  A
)  =  ( ( N  .^  A )
( +g  `  G ) A ) )
3733, 36eqtr4d 2225 . . 3  |-  ( ph  ->  ( ( N  .^  A )  .X.  A
)  =  ( ( N  +  1 ) 
.^  A ) )
3837oveq1d 5912 . 2  |-  ( ph  ->  ( ( ( N 
.^  A )  .X.  A )  .X.  ( K  .^  B ) )  =  ( ( ( N  +  1 ) 
.^  A )  .X.  ( K  .^  B ) ) )
3924, 30, 383eqtrd 2226 1  |-  ( ph  ->  ( ( ( N 
.^  A )  .X.  ( K  .^  B ) )  .X.  A )  =  ( ( ( N  +  1 ) 
.^  A )  .X.  ( K  .^  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2160   ` cfv 5235  (class class class)co 5897   1c1 7843    + caddc 7845   NN0cn0 9207   Basecbs 12515   +g cplusg 12592   .rcmulr 12593   Mndcmnd 12892  .gcmg 13076  mulGrpcmgp 13291  SRingcsrg 13334
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605  ax-cnex 7933  ax-resscn 7934  ax-1cn 7935  ax-1re 7936  ax-icn 7937  ax-addcl 7938  ax-addrcl 7939  ax-mulcl 7940  ax-addcom 7942  ax-addass 7944  ax-distr 7946  ax-i2m1 7947  ax-0lt1 7948  ax-0id 7950  ax-rnegex 7951  ax-cnre 7953  ax-pre-ltirr 7954  ax-pre-ltwlin 7955  ax-pre-lttrn 7956  ax-pre-ltadd 7958
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-iord 4384  df-on 4386  df-ilim 4387  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-riota 5852  df-ov 5900  df-oprab 5901  df-mpo 5902  df-1st 6166  df-2nd 6167  df-recs 6331  df-frec 6417  df-pnf 8025  df-mnf 8026  df-xr 8027  df-ltxr 8028  df-le 8029  df-sub 8161  df-neg 8162  df-inn 8951  df-2 9009  df-3 9010  df-n0 9208  df-z 9285  df-uz 9560  df-seqfrec 10479  df-ndx 12518  df-slot 12519  df-base 12521  df-sets 12522  df-plusg 12605  df-mulr 12606  df-0g 12766  df-mgm 12835  df-sgrp 12880  df-mnd 12893  df-minusg 12964  df-mulg 13077  df-mgp 13292  df-ur 13331  df-srg 13335
This theorem is referenced by:  srgpcomppsc  13363
  Copyright terms: Public domain W3C validator