ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  srgpcompp Unicode version

Theorem srgpcompp 13490
Description: If two elements of a semiring commute, they also commute if the elements are raised to a higher power. (Contributed by AV, 23-Aug-2019.)
Hypotheses
Ref Expression
srgpcomp.s  |-  S  =  ( Base `  R
)
srgpcomp.m  |-  .X.  =  ( .r `  R )
srgpcomp.g  |-  G  =  (mulGrp `  R )
srgpcomp.e  |-  .^  =  (.g
`  G )
srgpcomp.r  |-  ( ph  ->  R  e. SRing )
srgpcomp.a  |-  ( ph  ->  A  e.  S )
srgpcomp.b  |-  ( ph  ->  B  e.  S )
srgpcomp.k  |-  ( ph  ->  K  e.  NN0 )
srgpcomp.c  |-  ( ph  ->  ( A  .X.  B
)  =  ( B 
.X.  A ) )
srgpcompp.n  |-  ( ph  ->  N  e.  NN0 )
Assertion
Ref Expression
srgpcompp  |-  ( ph  ->  ( ( ( N 
.^  A )  .X.  ( K  .^  B ) )  .X.  A )  =  ( ( ( N  +  1 ) 
.^  A )  .X.  ( K  .^  B ) ) )

Proof of Theorem srgpcompp
StepHypRef Expression
1 srgpcomp.r . . 3  |-  ( ph  ->  R  e. SRing )
2 srgpcomp.g . . . . . . 7  |-  G  =  (mulGrp `  R )
32srgmgp 13467 . . . . . 6  |-  ( R  e. SRing  ->  G  e.  Mnd )
41, 3syl 14 . . . . 5  |-  ( ph  ->  G  e.  Mnd )
5 srgpcompp.n . . . . 5  |-  ( ph  ->  N  e.  NN0 )
6 srgpcomp.a . . . . . 6  |-  ( ph  ->  A  e.  S )
7 srgpcomp.s . . . . . . . 8  |-  S  =  ( Base `  R
)
82, 7mgpbasg 13425 . . . . . . 7  |-  ( R  e. SRing  ->  S  =  (
Base `  G )
)
91, 8syl 14 . . . . . 6  |-  ( ph  ->  S  =  ( Base `  G ) )
106, 9eleqtrd 2272 . . . . 5  |-  ( ph  ->  A  e.  ( Base `  G ) )
11 eqid 2193 . . . . . 6  |-  ( Base `  G )  =  (
Base `  G )
12 srgpcomp.e . . . . . 6  |-  .^  =  (.g
`  G )
1311, 12mulgnn0cl 13211 . . . . 5  |-  ( ( G  e.  Mnd  /\  N  e.  NN0  /\  A  e.  ( Base `  G
) )  ->  ( N  .^  A )  e.  ( Base `  G
) )
144, 5, 10, 13syl3anc 1249 . . . 4  |-  ( ph  ->  ( N  .^  A
)  e.  ( Base `  G ) )
1514, 9eleqtrrd 2273 . . 3  |-  ( ph  ->  ( N  .^  A
)  e.  S )
16 srgpcomp.k . . . . 5  |-  ( ph  ->  K  e.  NN0 )
17 srgpcomp.b . . . . . 6  |-  ( ph  ->  B  e.  S )
1817, 9eleqtrd 2272 . . . . 5  |-  ( ph  ->  B  e.  ( Base `  G ) )
1911, 12mulgnn0cl 13211 . . . . 5  |-  ( ( G  e.  Mnd  /\  K  e.  NN0  /\  B  e.  ( Base `  G
) )  ->  ( K  .^  B )  e.  ( Base `  G
) )
204, 16, 18, 19syl3anc 1249 . . . 4  |-  ( ph  ->  ( K  .^  B
)  e.  ( Base `  G ) )
2120, 9eleqtrrd 2273 . . 3  |-  ( ph  ->  ( K  .^  B
)  e.  S )
22 srgpcomp.m . . . 4  |-  .X.  =  ( .r `  R )
237, 22srgass 13470 . . 3  |-  ( ( R  e. SRing  /\  (
( N  .^  A
)  e.  S  /\  ( K  .^  B )  e.  S  /\  A  e.  S ) )  -> 
( ( ( N 
.^  A )  .X.  ( K  .^  B ) )  .X.  A )  =  ( ( N 
.^  A )  .X.  ( ( K  .^  B )  .X.  A
) ) )
241, 15, 21, 6, 23syl13anc 1251 . 2  |-  ( ph  ->  ( ( ( N 
.^  A )  .X.  ( K  .^  B ) )  .X.  A )  =  ( ( N 
.^  A )  .X.  ( ( K  .^  B )  .X.  A
) ) )
25 srgpcomp.c . . . . 5  |-  ( ph  ->  ( A  .X.  B
)  =  ( B 
.X.  A ) )
267, 22, 2, 12, 1, 6, 17, 16, 25srgpcomp 13489 . . . 4  |-  ( ph  ->  ( ( K  .^  B )  .X.  A
)  =  ( A 
.X.  ( K  .^  B ) ) )
2726oveq2d 5935 . . 3  |-  ( ph  ->  ( ( N  .^  A )  .X.  (
( K  .^  B
)  .X.  A )
)  =  ( ( N  .^  A )  .X.  ( A  .X.  ( K  .^  B ) ) ) )
287, 22srgass 13470 . . . 4  |-  ( ( R  e. SRing  /\  (
( N  .^  A
)  e.  S  /\  A  e.  S  /\  ( K  .^  B )  e.  S ) )  ->  ( ( ( N  .^  A )  .X.  A )  .X.  ( K  .^  B ) )  =  ( ( N 
.^  A )  .X.  ( A  .X.  ( K 
.^  B ) ) ) )
291, 15, 6, 21, 28syl13anc 1251 . . 3  |-  ( ph  ->  ( ( ( N 
.^  A )  .X.  A )  .X.  ( K  .^  B ) )  =  ( ( N 
.^  A )  .X.  ( A  .X.  ( K 
.^  B ) ) ) )
3027, 29eqtr4d 2229 . 2  |-  ( ph  ->  ( ( N  .^  A )  .X.  (
( K  .^  B
)  .X.  A )
)  =  ( ( ( N  .^  A
)  .X.  A )  .X.  ( K  .^  B
) ) )
312, 22mgpplusgg 13423 . . . . . 6  |-  ( R  e. SRing  ->  .X.  =  ( +g  `  G ) )
321, 31syl 14 . . . . 5  |-  ( ph  ->  .X.  =  ( +g  `  G ) )
3332oveqd 5936 . . . 4  |-  ( ph  ->  ( ( N  .^  A )  .X.  A
)  =  ( ( N  .^  A )
( +g  `  G ) A ) )
34 eqid 2193 . . . . . 6  |-  ( +g  `  G )  =  ( +g  `  G )
3511, 12, 34mulgnn0p1 13206 . . . . 5  |-  ( ( G  e.  Mnd  /\  N  e.  NN0  /\  A  e.  ( Base `  G
) )  ->  (
( N  +  1 )  .^  A )  =  ( ( N 
.^  A ) ( +g  `  G ) A ) )
364, 5, 10, 35syl3anc 1249 . . . 4  |-  ( ph  ->  ( ( N  + 
1 )  .^  A
)  =  ( ( N  .^  A )
( +g  `  G ) A ) )
3733, 36eqtr4d 2229 . . 3  |-  ( ph  ->  ( ( N  .^  A )  .X.  A
)  =  ( ( N  +  1 ) 
.^  A ) )
3837oveq1d 5934 . 2  |-  ( ph  ->  ( ( ( N 
.^  A )  .X.  A )  .X.  ( K  .^  B ) )  =  ( ( ( N  +  1 ) 
.^  A )  .X.  ( K  .^  B ) ) )
3924, 30, 383eqtrd 2230 1  |-  ( ph  ->  ( ( ( N 
.^  A )  .X.  ( K  .^  B ) )  .X.  A )  =  ( ( ( N  +  1 ) 
.^  A )  .X.  ( K  .^  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2164   ` cfv 5255  (class class class)co 5919   1c1 7875    + caddc 7877   NN0cn0 9243   Basecbs 12621   +g cplusg 12698   .rcmulr 12699   Mndcmnd 13000  .gcmg 13192  mulGrpcmgp 13419  SRingcsrg 13462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-frec 6446  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-inn 8985  df-2 9043  df-3 9044  df-n0 9244  df-z 9321  df-uz 9596  df-seqfrec 10522  df-ndx 12624  df-slot 12625  df-base 12627  df-sets 12628  df-plusg 12711  df-mulr 12712  df-0g 12872  df-mgm 12942  df-sgrp 12988  df-mnd 13001  df-minusg 13079  df-mulg 13193  df-mgp 13420  df-ur 13459  df-srg 13463
This theorem is referenced by:  srgpcomppsc  13491
  Copyright terms: Public domain W3C validator