ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  srgpcompp Unicode version

Theorem srgpcompp 13547
Description: If two elements of a semiring commute, they also commute if the elements are raised to a higher power. (Contributed by AV, 23-Aug-2019.)
Hypotheses
Ref Expression
srgpcomp.s  |-  S  =  ( Base `  R
)
srgpcomp.m  |-  .X.  =  ( .r `  R )
srgpcomp.g  |-  G  =  (mulGrp `  R )
srgpcomp.e  |-  .^  =  (.g
`  G )
srgpcomp.r  |-  ( ph  ->  R  e. SRing )
srgpcomp.a  |-  ( ph  ->  A  e.  S )
srgpcomp.b  |-  ( ph  ->  B  e.  S )
srgpcomp.k  |-  ( ph  ->  K  e.  NN0 )
srgpcomp.c  |-  ( ph  ->  ( A  .X.  B
)  =  ( B 
.X.  A ) )
srgpcompp.n  |-  ( ph  ->  N  e.  NN0 )
Assertion
Ref Expression
srgpcompp  |-  ( ph  ->  ( ( ( N 
.^  A )  .X.  ( K  .^  B ) )  .X.  A )  =  ( ( ( N  +  1 ) 
.^  A )  .X.  ( K  .^  B ) ) )

Proof of Theorem srgpcompp
StepHypRef Expression
1 srgpcomp.r . . 3  |-  ( ph  ->  R  e. SRing )
2 srgpcomp.g . . . . . . 7  |-  G  =  (mulGrp `  R )
32srgmgp 13524 . . . . . 6  |-  ( R  e. SRing  ->  G  e.  Mnd )
41, 3syl 14 . . . . 5  |-  ( ph  ->  G  e.  Mnd )
5 srgpcompp.n . . . . 5  |-  ( ph  ->  N  e.  NN0 )
6 srgpcomp.a . . . . . 6  |-  ( ph  ->  A  e.  S )
7 srgpcomp.s . . . . . . . 8  |-  S  =  ( Base `  R
)
82, 7mgpbasg 13482 . . . . . . 7  |-  ( R  e. SRing  ->  S  =  (
Base `  G )
)
91, 8syl 14 . . . . . 6  |-  ( ph  ->  S  =  ( Base `  G ) )
106, 9eleqtrd 2275 . . . . 5  |-  ( ph  ->  A  e.  ( Base `  G ) )
11 eqid 2196 . . . . . 6  |-  ( Base `  G )  =  (
Base `  G )
12 srgpcomp.e . . . . . 6  |-  .^  =  (.g
`  G )
1311, 12mulgnn0cl 13268 . . . . 5  |-  ( ( G  e.  Mnd  /\  N  e.  NN0  /\  A  e.  ( Base `  G
) )  ->  ( N  .^  A )  e.  ( Base `  G
) )
144, 5, 10, 13syl3anc 1249 . . . 4  |-  ( ph  ->  ( N  .^  A
)  e.  ( Base `  G ) )
1514, 9eleqtrrd 2276 . . 3  |-  ( ph  ->  ( N  .^  A
)  e.  S )
16 srgpcomp.k . . . . 5  |-  ( ph  ->  K  e.  NN0 )
17 srgpcomp.b . . . . . 6  |-  ( ph  ->  B  e.  S )
1817, 9eleqtrd 2275 . . . . 5  |-  ( ph  ->  B  e.  ( Base `  G ) )
1911, 12mulgnn0cl 13268 . . . . 5  |-  ( ( G  e.  Mnd  /\  K  e.  NN0  /\  B  e.  ( Base `  G
) )  ->  ( K  .^  B )  e.  ( Base `  G
) )
204, 16, 18, 19syl3anc 1249 . . . 4  |-  ( ph  ->  ( K  .^  B
)  e.  ( Base `  G ) )
2120, 9eleqtrrd 2276 . . 3  |-  ( ph  ->  ( K  .^  B
)  e.  S )
22 srgpcomp.m . . . 4  |-  .X.  =  ( .r `  R )
237, 22srgass 13527 . . 3  |-  ( ( R  e. SRing  /\  (
( N  .^  A
)  e.  S  /\  ( K  .^  B )  e.  S  /\  A  e.  S ) )  -> 
( ( ( N 
.^  A )  .X.  ( K  .^  B ) )  .X.  A )  =  ( ( N 
.^  A )  .X.  ( ( K  .^  B )  .X.  A
) ) )
241, 15, 21, 6, 23syl13anc 1251 . 2  |-  ( ph  ->  ( ( ( N 
.^  A )  .X.  ( K  .^  B ) )  .X.  A )  =  ( ( N 
.^  A )  .X.  ( ( K  .^  B )  .X.  A
) ) )
25 srgpcomp.c . . . . 5  |-  ( ph  ->  ( A  .X.  B
)  =  ( B 
.X.  A ) )
267, 22, 2, 12, 1, 6, 17, 16, 25srgpcomp 13546 . . . 4  |-  ( ph  ->  ( ( K  .^  B )  .X.  A
)  =  ( A 
.X.  ( K  .^  B ) ) )
2726oveq2d 5938 . . 3  |-  ( ph  ->  ( ( N  .^  A )  .X.  (
( K  .^  B
)  .X.  A )
)  =  ( ( N  .^  A )  .X.  ( A  .X.  ( K  .^  B ) ) ) )
287, 22srgass 13527 . . . 4  |-  ( ( R  e. SRing  /\  (
( N  .^  A
)  e.  S  /\  A  e.  S  /\  ( K  .^  B )  e.  S ) )  ->  ( ( ( N  .^  A )  .X.  A )  .X.  ( K  .^  B ) )  =  ( ( N 
.^  A )  .X.  ( A  .X.  ( K 
.^  B ) ) ) )
291, 15, 6, 21, 28syl13anc 1251 . . 3  |-  ( ph  ->  ( ( ( N 
.^  A )  .X.  A )  .X.  ( K  .^  B ) )  =  ( ( N 
.^  A )  .X.  ( A  .X.  ( K 
.^  B ) ) ) )
3027, 29eqtr4d 2232 . 2  |-  ( ph  ->  ( ( N  .^  A )  .X.  (
( K  .^  B
)  .X.  A )
)  =  ( ( ( N  .^  A
)  .X.  A )  .X.  ( K  .^  B
) ) )
312, 22mgpplusgg 13480 . . . . . 6  |-  ( R  e. SRing  ->  .X.  =  ( +g  `  G ) )
321, 31syl 14 . . . . 5  |-  ( ph  ->  .X.  =  ( +g  `  G ) )
3332oveqd 5939 . . . 4  |-  ( ph  ->  ( ( N  .^  A )  .X.  A
)  =  ( ( N  .^  A )
( +g  `  G ) A ) )
34 eqid 2196 . . . . . 6  |-  ( +g  `  G )  =  ( +g  `  G )
3511, 12, 34mulgnn0p1 13263 . . . . 5  |-  ( ( G  e.  Mnd  /\  N  e.  NN0  /\  A  e.  ( Base `  G
) )  ->  (
( N  +  1 )  .^  A )  =  ( ( N 
.^  A ) ( +g  `  G ) A ) )
364, 5, 10, 35syl3anc 1249 . . . 4  |-  ( ph  ->  ( ( N  + 
1 )  .^  A
)  =  ( ( N  .^  A )
( +g  `  G ) A ) )
3733, 36eqtr4d 2232 . . 3  |-  ( ph  ->  ( ( N  .^  A )  .X.  A
)  =  ( ( N  +  1 ) 
.^  A ) )
3837oveq1d 5937 . 2  |-  ( ph  ->  ( ( ( N 
.^  A )  .X.  A )  .X.  ( K  .^  B ) )  =  ( ( ( N  +  1 ) 
.^  A )  .X.  ( K  .^  B ) ) )
3924, 30, 383eqtrd 2233 1  |-  ( ph  ->  ( ( ( N 
.^  A )  .X.  ( K  .^  B ) )  .X.  A )  =  ( ( ( N  +  1 ) 
.^  A )  .X.  ( K  .^  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2167   ` cfv 5258  (class class class)co 5922   1c1 7880    + caddc 7882   NN0cn0 9249   Basecbs 12678   +g cplusg 12755   .rcmulr 12756   Mndcmnd 13057  .gcmg 13249  mulGrpcmgp 13476  SRingcsrg 13519
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-inn 8991  df-2 9049  df-3 9050  df-n0 9250  df-z 9327  df-uz 9602  df-seqfrec 10540  df-ndx 12681  df-slot 12682  df-base 12684  df-sets 12685  df-plusg 12768  df-mulr 12769  df-0g 12929  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-minusg 13136  df-mulg 13250  df-mgp 13477  df-ur 13516  df-srg 13520
This theorem is referenced by:  srgpcomppsc  13548
  Copyright terms: Public domain W3C validator