ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  srgpcomp Unicode version

Theorem srgpcomp 13827
Description: If two elements of a semiring commute, they also commute if one of the elements is raised to a higher power. (Contributed by AV, 23-Aug-2019.)
Hypotheses
Ref Expression
srgpcomp.s  |-  S  =  ( Base `  R
)
srgpcomp.m  |-  .X.  =  ( .r `  R )
srgpcomp.g  |-  G  =  (mulGrp `  R )
srgpcomp.e  |-  .^  =  (.g
`  G )
srgpcomp.r  |-  ( ph  ->  R  e. SRing )
srgpcomp.a  |-  ( ph  ->  A  e.  S )
srgpcomp.b  |-  ( ph  ->  B  e.  S )
srgpcomp.k  |-  ( ph  ->  K  e.  NN0 )
srgpcomp.c  |-  ( ph  ->  ( A  .X.  B
)  =  ( B 
.X.  A ) )
Assertion
Ref Expression
srgpcomp  |-  ( ph  ->  ( ( K  .^  B )  .X.  A
)  =  ( A 
.X.  ( K  .^  B ) ) )

Proof of Theorem srgpcomp
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 srgpcomp.k . 2  |-  ( ph  ->  K  e.  NN0 )
2 oveq1 5964 . . . . . 6  |-  ( x  =  0  ->  (
x  .^  B )  =  ( 0  .^  B ) )
32oveq1d 5972 . . . . 5  |-  ( x  =  0  ->  (
( x  .^  B
)  .X.  A )  =  ( ( 0 
.^  B )  .X.  A ) )
42oveq2d 5973 . . . . 5  |-  ( x  =  0  ->  ( A  .X.  ( x  .^  B ) )  =  ( A  .X.  (
0  .^  B )
) )
53, 4eqeq12d 2221 . . . 4  |-  ( x  =  0  ->  (
( ( x  .^  B )  .X.  A
)  =  ( A 
.X.  ( x  .^  B ) )  <->  ( (
0  .^  B )  .X.  A )  =  ( A  .X.  ( 0 
.^  B ) ) ) )
65imbi2d 230 . . 3  |-  ( x  =  0  ->  (
( ph  ->  ( ( x  .^  B )  .X.  A )  =  ( A  .X.  ( x  .^  B ) ) )  <-> 
( ph  ->  ( ( 0  .^  B )  .X.  A )  =  ( A  .X.  ( 0 
.^  B ) ) ) ) )
7 oveq1 5964 . . . . . 6  |-  ( x  =  y  ->  (
x  .^  B )  =  ( y  .^  B ) )
87oveq1d 5972 . . . . 5  |-  ( x  =  y  ->  (
( x  .^  B
)  .X.  A )  =  ( ( y 
.^  B )  .X.  A ) )
97oveq2d 5973 . . . . 5  |-  ( x  =  y  ->  ( A  .X.  ( x  .^  B ) )  =  ( A  .X.  (
y  .^  B )
) )
108, 9eqeq12d 2221 . . . 4  |-  ( x  =  y  ->  (
( ( x  .^  B )  .X.  A
)  =  ( A 
.X.  ( x  .^  B ) )  <->  ( (
y  .^  B )  .X.  A )  =  ( A  .X.  ( y  .^  B ) ) ) )
1110imbi2d 230 . . 3  |-  ( x  =  y  ->  (
( ph  ->  ( ( x  .^  B )  .X.  A )  =  ( A  .X.  ( x  .^  B ) ) )  <-> 
( ph  ->  ( ( y  .^  B )  .X.  A )  =  ( A  .X.  ( y  .^  B ) ) ) ) )
12 oveq1 5964 . . . . . 6  |-  ( x  =  ( y  +  1 )  ->  (
x  .^  B )  =  ( ( y  +  1 )  .^  B ) )
1312oveq1d 5972 . . . . 5  |-  ( x  =  ( y  +  1 )  ->  (
( x  .^  B
)  .X.  A )  =  ( ( ( y  +  1 ) 
.^  B )  .X.  A ) )
1412oveq2d 5973 . . . . 5  |-  ( x  =  ( y  +  1 )  ->  ( A  .X.  ( x  .^  B ) )  =  ( A  .X.  (
( y  +  1 )  .^  B )
) )
1513, 14eqeq12d 2221 . . . 4  |-  ( x  =  ( y  +  1 )  ->  (
( ( x  .^  B )  .X.  A
)  =  ( A 
.X.  ( x  .^  B ) )  <->  ( (
( y  +  1 )  .^  B )  .X.  A )  =  ( A  .X.  ( (
y  +  1 ) 
.^  B ) ) ) )
1615imbi2d 230 . . 3  |-  ( x  =  ( y  +  1 )  ->  (
( ph  ->  ( ( x  .^  B )  .X.  A )  =  ( A  .X.  ( x  .^  B ) ) )  <-> 
( ph  ->  ( ( ( y  +  1 )  .^  B )  .X.  A )  =  ( A  .X.  ( (
y  +  1 ) 
.^  B ) ) ) ) )
17 oveq1 5964 . . . . . 6  |-  ( x  =  K  ->  (
x  .^  B )  =  ( K  .^  B ) )
1817oveq1d 5972 . . . . 5  |-  ( x  =  K  ->  (
( x  .^  B
)  .X.  A )  =  ( ( K 
.^  B )  .X.  A ) )
1917oveq2d 5973 . . . . 5  |-  ( x  =  K  ->  ( A  .X.  ( x  .^  B ) )  =  ( A  .X.  ( K  .^  B ) ) )
2018, 19eqeq12d 2221 . . . 4  |-  ( x  =  K  ->  (
( ( x  .^  B )  .X.  A
)  =  ( A 
.X.  ( x  .^  B ) )  <->  ( ( K  .^  B )  .X.  A )  =  ( A  .X.  ( K  .^  B ) ) ) )
2120imbi2d 230 . . 3  |-  ( x  =  K  ->  (
( ph  ->  ( ( x  .^  B )  .X.  A )  =  ( A  .X.  ( x  .^  B ) ) )  <-> 
( ph  ->  ( ( K  .^  B )  .X.  A )  =  ( A  .X.  ( K  .^  B ) ) ) ) )
22 srgpcomp.b . . . . . . . 8  |-  ( ph  ->  B  e.  S )
23 srgpcomp.r . . . . . . . . 9  |-  ( ph  ->  R  e. SRing )
24 srgpcomp.g . . . . . . . . . 10  |-  G  =  (mulGrp `  R )
25 srgpcomp.s . . . . . . . . . 10  |-  S  =  ( Base `  R
)
2624, 25mgpbasg 13763 . . . . . . . . 9  |-  ( R  e. SRing  ->  S  =  (
Base `  G )
)
2723, 26syl 14 . . . . . . . 8  |-  ( ph  ->  S  =  ( Base `  G ) )
2822, 27eleqtrd 2285 . . . . . . 7  |-  ( ph  ->  B  e.  ( Base `  G ) )
29 eqid 2206 . . . . . . . 8  |-  ( Base `  G )  =  (
Base `  G )
30 eqid 2206 . . . . . . . 8  |-  ( 0g
`  G )  =  ( 0g `  G
)
31 srgpcomp.e . . . . . . . 8  |-  .^  =  (.g
`  G )
3229, 30, 31mulg0 13536 . . . . . . 7  |-  ( B  e.  ( Base `  G
)  ->  ( 0 
.^  B )  =  ( 0g `  G
) )
3328, 32syl 14 . . . . . 6  |-  ( ph  ->  ( 0  .^  B
)  =  ( 0g
`  G ) )
34 eqid 2206 . . . . . . . 8  |-  ( 1r
`  R )  =  ( 1r `  R
)
3524, 34ringidvalg 13798 . . . . . . 7  |-  ( R  e. SRing  ->  ( 1r `  R )  =  ( 0g `  G ) )
3623, 35syl 14 . . . . . 6  |-  ( ph  ->  ( 1r `  R
)  =  ( 0g
`  G ) )
3733, 36eqtr4d 2242 . . . . 5  |-  ( ph  ->  ( 0  .^  B
)  =  ( 1r
`  R ) )
3837oveq1d 5972 . . . 4  |-  ( ph  ->  ( ( 0  .^  B )  .X.  A
)  =  ( ( 1r `  R ) 
.X.  A ) )
39 srgpcomp.a . . . . . 6  |-  ( ph  ->  A  e.  S )
40 srgpcomp.m . . . . . . 7  |-  .X.  =  ( .r `  R )
4125, 40, 34srgridm 13817 . . . . . 6  |-  ( ( R  e. SRing  /\  A  e.  S )  ->  ( A  .X.  ( 1r `  R ) )  =  A )
4223, 39, 41syl2anc 411 . . . . 5  |-  ( ph  ->  ( A  .X.  ( 1r `  R ) )  =  A )
4337oveq2d 5973 . . . . 5  |-  ( ph  ->  ( A  .X.  (
0  .^  B )
)  =  ( A 
.X.  ( 1r `  R ) ) )
4425, 40, 34srglidm 13816 . . . . . 6  |-  ( ( R  e. SRing  /\  A  e.  S )  ->  (
( 1r `  R
)  .X.  A )  =  A )
4523, 39, 44syl2anc 411 . . . . 5  |-  ( ph  ->  ( ( 1r `  R )  .X.  A
)  =  A )
4642, 43, 453eqtr4rd 2250 . . . 4  |-  ( ph  ->  ( ( 1r `  R )  .X.  A
)  =  ( A 
.X.  ( 0  .^  B ) ) )
4738, 46eqtrd 2239 . . 3  |-  ( ph  ->  ( ( 0  .^  B )  .X.  A
)  =  ( A 
.X.  ( 0  .^  B ) ) )
4824srgmgp 13805 . . . . . . . . . . . . . 14  |-  ( R  e. SRing  ->  G  e.  Mnd )
4923, 48syl 14 . . . . . . . . . . . . 13  |-  ( ph  ->  G  e.  Mnd )
5049adantr 276 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  NN0 )  ->  G  e.  Mnd )
51 simpr 110 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  NN0 )  ->  y  e.  NN0 )
5222adantr 276 . . . . . . . . . . . . 13  |-  ( (
ph  /\  y  e.  NN0 )  ->  B  e.  S )
5327adantr 276 . . . . . . . . . . . . 13  |-  ( (
ph  /\  y  e.  NN0 )  ->  S  =  ( Base `  G )
)
5452, 53eleqtrd 2285 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  NN0 )  ->  B  e.  ( Base `  G )
)
55 eqid 2206 . . . . . . . . . . . . 13  |-  ( +g  `  G )  =  ( +g  `  G )
5629, 31, 55mulgnn0p1 13544 . . . . . . . . . . . 12  |-  ( ( G  e.  Mnd  /\  y  e.  NN0  /\  B  e.  ( Base `  G
) )  ->  (
( y  +  1 )  .^  B )  =  ( ( y 
.^  B ) ( +g  `  G ) B ) )
5750, 51, 54, 56syl3anc 1250 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  NN0 )  ->  ( (
y  +  1 ) 
.^  B )  =  ( ( y  .^  B ) ( +g  `  G ) B ) )
5824, 40mgpplusgg 13761 . . . . . . . . . . . . . . 15  |-  ( R  e. SRing  ->  .X.  =  ( +g  `  G ) )
5923, 58syl 14 . . . . . . . . . . . . . 14  |-  ( ph  ->  .X.  =  ( +g  `  G ) )
6059oveqd 5974 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( y  .^  B )  .X.  B
)  =  ( ( y  .^  B )
( +g  `  G ) B ) )
6160eqeq2d 2218 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( y  +  1 )  .^  B )  =  ( ( y  .^  B
)  .X.  B )  <->  ( ( y  +  1 )  .^  B )  =  ( ( y 
.^  B ) ( +g  `  G ) B ) ) )
6261adantr 276 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  NN0 )  ->  ( (
( y  +  1 )  .^  B )  =  ( ( y 
.^  B )  .X.  B )  <->  ( (
y  +  1 ) 
.^  B )  =  ( ( y  .^  B ) ( +g  `  G ) B ) ) )
6357, 62mpbird 167 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  NN0 )  ->  ( (
y  +  1 ) 
.^  B )  =  ( ( y  .^  B )  .X.  B
) )
6463oveq1d 5972 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  NN0 )  ->  ( (
( y  +  1 )  .^  B )  .X.  A )  =  ( ( ( y  .^  B )  .X.  B
)  .X.  A )
)
65 srgpcomp.c . . . . . . . . . . . . 13  |-  ( ph  ->  ( A  .X.  B
)  =  ( B 
.X.  A ) )
6665eqcomd 2212 . . . . . . . . . . . 12  |-  ( ph  ->  ( B  .X.  A
)  =  ( A 
.X.  B ) )
6766adantr 276 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  NN0 )  ->  ( B  .X.  A )  =  ( A  .X.  B )
)
6867oveq2d 5973 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  NN0 )  ->  ( (
y  .^  B )  .X.  ( B  .X.  A
) )  =  ( ( y  .^  B
)  .X.  ( A  .X.  B ) ) )
6923adantr 276 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  NN0 )  ->  R  e. SRing )
7029, 31mulgnn0cl 13549 . . . . . . . . . . . . 13  |-  ( ( G  e.  Mnd  /\  y  e.  NN0  /\  B  e.  ( Base `  G
) )  ->  (
y  .^  B )  e.  ( Base `  G
) )
7150, 51, 54, 70syl3anc 1250 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  NN0 )  ->  ( y  .^  B )  e.  (
Base `  G )
)
7271, 53eleqtrrd 2286 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  NN0 )  ->  ( y  .^  B )  e.  S
)
7339adantr 276 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  NN0 )  ->  A  e.  S )
7425, 40srgass 13808 . . . . . . . . . . 11  |-  ( ( R  e. SRing  /\  (
( y  .^  B
)  e.  S  /\  B  e.  S  /\  A  e.  S )
)  ->  ( (
( y  .^  B
)  .X.  B )  .X.  A )  =  ( ( y  .^  B
)  .X.  ( B  .X.  A ) ) )
7569, 72, 52, 73, 74syl13anc 1252 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  NN0 )  ->  ( (
( y  .^  B
)  .X.  B )  .X.  A )  =  ( ( y  .^  B
)  .X.  ( B  .X.  A ) ) )
7625, 40srgass 13808 . . . . . . . . . . 11  |-  ( ( R  e. SRing  /\  (
( y  .^  B
)  e.  S  /\  A  e.  S  /\  B  e.  S )
)  ->  ( (
( y  .^  B
)  .X.  A )  .X.  B )  =  ( ( y  .^  B
)  .X.  ( A  .X.  B ) ) )
7769, 72, 73, 52, 76syl13anc 1252 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  NN0 )  ->  ( (
( y  .^  B
)  .X.  A )  .X.  B )  =  ( ( y  .^  B
)  .X.  ( A  .X.  B ) ) )
7868, 75, 773eqtr4d 2249 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  NN0 )  ->  ( (
( y  .^  B
)  .X.  B )  .X.  A )  =  ( ( ( y  .^  B )  .X.  A
)  .X.  B )
)
7964, 78eqtrd 2239 . . . . . . . 8  |-  ( (
ph  /\  y  e.  NN0 )  ->  ( (
( y  +  1 )  .^  B )  .X.  A )  =  ( ( ( y  .^  B )  .X.  A
)  .X.  B )
)
8079adantr 276 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  NN0 )  /\  (
( y  .^  B
)  .X.  A )  =  ( A  .X.  ( y  .^  B
) ) )  -> 
( ( ( y  +  1 )  .^  B )  .X.  A
)  =  ( ( ( y  .^  B
)  .X.  A )  .X.  B ) )
81 oveq1 5964 . . . . . . . 8  |-  ( ( ( y  .^  B
)  .X.  A )  =  ( A  .X.  ( y  .^  B
) )  ->  (
( ( y  .^  B )  .X.  A
)  .X.  B )  =  ( ( A 
.X.  ( y  .^  B ) )  .X.  B ) )
8225, 40srgass 13808 . . . . . . . . . 10  |-  ( ( R  e. SRing  /\  ( A  e.  S  /\  ( y  .^  B
)  e.  S  /\  B  e.  S )
)  ->  ( ( A  .X.  ( y  .^  B ) )  .X.  B )  =  ( A  .X.  ( (
y  .^  B )  .X.  B ) ) )
8369, 73, 72, 52, 82syl13anc 1252 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  NN0 )  ->  ( ( A  .X.  ( y  .^  B ) )  .X.  B )  =  ( A  .X.  ( (
y  .^  B )  .X.  B ) ) )
8463eqcomd 2212 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  NN0 )  ->  ( (
y  .^  B )  .X.  B )  =  ( ( y  +  1 )  .^  B )
)
8584oveq2d 5973 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  NN0 )  ->  ( A  .X.  ( ( y  .^  B )  .X.  B
) )  =  ( A  .X.  ( (
y  +  1 ) 
.^  B ) ) )
8683, 85eqtrd 2239 . . . . . . . 8  |-  ( (
ph  /\  y  e.  NN0 )  ->  ( ( A  .X.  ( y  .^  B ) )  .X.  B )  =  ( A  .X.  ( (
y  +  1 ) 
.^  B ) ) )
8781, 86sylan9eqr 2261 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  NN0 )  /\  (
( y  .^  B
)  .X.  A )  =  ( A  .X.  ( y  .^  B
) ) )  -> 
( ( ( y 
.^  B )  .X.  A )  .X.  B
)  =  ( A 
.X.  ( ( y  +  1 )  .^  B ) ) )
8880, 87eqtrd 2239 . . . . . 6  |-  ( ( ( ph  /\  y  e.  NN0 )  /\  (
( y  .^  B
)  .X.  A )  =  ( A  .X.  ( y  .^  B
) ) )  -> 
( ( ( y  +  1 )  .^  B )  .X.  A
)  =  ( A 
.X.  ( ( y  +  1 )  .^  B ) ) )
8988ex 115 . . . . 5  |-  ( (
ph  /\  y  e.  NN0 )  ->  ( (
( y  .^  B
)  .X.  A )  =  ( A  .X.  ( y  .^  B
) )  ->  (
( ( y  +  1 )  .^  B
)  .X.  A )  =  ( A  .X.  ( ( y  +  1 )  .^  B
) ) ) )
9089expcom 116 . . . 4  |-  ( y  e.  NN0  ->  ( ph  ->  ( ( ( y 
.^  B )  .X.  A )  =  ( A  .X.  ( y  .^  B ) )  -> 
( ( ( y  +  1 )  .^  B )  .X.  A
)  =  ( A 
.X.  ( ( y  +  1 )  .^  B ) ) ) ) )
9190a2d 26 . . 3  |-  ( y  e.  NN0  ->  ( (
ph  ->  ( ( y 
.^  B )  .X.  A )  =  ( A  .X.  ( y  .^  B ) ) )  ->  ( ph  ->  ( ( ( y  +  1 )  .^  B
)  .X.  A )  =  ( A  .X.  ( ( y  +  1 )  .^  B
) ) ) ) )
926, 11, 16, 21, 47, 91nn0ind 9507 . 2  |-  ( K  e.  NN0  ->  ( ph  ->  ( ( K  .^  B )  .X.  A
)  =  ( A 
.X.  ( K  .^  B ) ) ) )
931, 92mpcom 36 1  |-  ( ph  ->  ( ( K  .^  B )  .X.  A
)  =  ( A 
.X.  ( K  .^  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2177   ` cfv 5280  (class class class)co 5957   0cc0 7945   1c1 7946    + caddc 7948   NN0cn0 9315   Basecbs 12907   +g cplusg 12984   .rcmulr 12985   0gc0g 13163   Mndcmnd 13323  .gcmg 13530  mulGrpcmgp 13757   1rcur 13796  SRingcsrg 13800
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-iinf 4644  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-addcom 8045  ax-addass 8047  ax-distr 8049  ax-i2m1 8050  ax-0lt1 8051  ax-0id 8053  ax-rnegex 8054  ax-cnre 8056  ax-pre-ltirr 8057  ax-pre-ltwlin 8058  ax-pre-lttrn 8059  ax-pre-ltadd 8061
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-id 4348  df-iord 4421  df-on 4423  df-ilim 4424  df-suc 4426  df-iom 4647  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-recs 6404  df-frec 6490  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132  df-le 8133  df-sub 8265  df-neg 8266  df-inn 9057  df-2 9115  df-3 9116  df-n0 9316  df-z 9393  df-uz 9669  df-seqfrec 10615  df-ndx 12910  df-slot 12911  df-base 12913  df-sets 12914  df-plusg 12997  df-mulr 12998  df-0g 13165  df-mgm 13263  df-sgrp 13309  df-mnd 13324  df-minusg 13411  df-mulg 13531  df-mgp 13758  df-ur 13797  df-srg 13801
This theorem is referenced by:  srgpcompp  13828
  Copyright terms: Public domain W3C validator