ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  srgpcomp Unicode version

Theorem srgpcomp 13486
Description: If two elements of a semiring commute, they also commute if one of the elements is raised to a higher power. (Contributed by AV, 23-Aug-2019.)
Hypotheses
Ref Expression
srgpcomp.s  |-  S  =  ( Base `  R
)
srgpcomp.m  |-  .X.  =  ( .r `  R )
srgpcomp.g  |-  G  =  (mulGrp `  R )
srgpcomp.e  |-  .^  =  (.g
`  G )
srgpcomp.r  |-  ( ph  ->  R  e. SRing )
srgpcomp.a  |-  ( ph  ->  A  e.  S )
srgpcomp.b  |-  ( ph  ->  B  e.  S )
srgpcomp.k  |-  ( ph  ->  K  e.  NN0 )
srgpcomp.c  |-  ( ph  ->  ( A  .X.  B
)  =  ( B 
.X.  A ) )
Assertion
Ref Expression
srgpcomp  |-  ( ph  ->  ( ( K  .^  B )  .X.  A
)  =  ( A 
.X.  ( K  .^  B ) ) )

Proof of Theorem srgpcomp
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 srgpcomp.k . 2  |-  ( ph  ->  K  e.  NN0 )
2 oveq1 5925 . . . . . 6  |-  ( x  =  0  ->  (
x  .^  B )  =  ( 0  .^  B ) )
32oveq1d 5933 . . . . 5  |-  ( x  =  0  ->  (
( x  .^  B
)  .X.  A )  =  ( ( 0 
.^  B )  .X.  A ) )
42oveq2d 5934 . . . . 5  |-  ( x  =  0  ->  ( A  .X.  ( x  .^  B ) )  =  ( A  .X.  (
0  .^  B )
) )
53, 4eqeq12d 2208 . . . 4  |-  ( x  =  0  ->  (
( ( x  .^  B )  .X.  A
)  =  ( A 
.X.  ( x  .^  B ) )  <->  ( (
0  .^  B )  .X.  A )  =  ( A  .X.  ( 0 
.^  B ) ) ) )
65imbi2d 230 . . 3  |-  ( x  =  0  ->  (
( ph  ->  ( ( x  .^  B )  .X.  A )  =  ( A  .X.  ( x  .^  B ) ) )  <-> 
( ph  ->  ( ( 0  .^  B )  .X.  A )  =  ( A  .X.  ( 0 
.^  B ) ) ) ) )
7 oveq1 5925 . . . . . 6  |-  ( x  =  y  ->  (
x  .^  B )  =  ( y  .^  B ) )
87oveq1d 5933 . . . . 5  |-  ( x  =  y  ->  (
( x  .^  B
)  .X.  A )  =  ( ( y 
.^  B )  .X.  A ) )
97oveq2d 5934 . . . . 5  |-  ( x  =  y  ->  ( A  .X.  ( x  .^  B ) )  =  ( A  .X.  (
y  .^  B )
) )
108, 9eqeq12d 2208 . . . 4  |-  ( x  =  y  ->  (
( ( x  .^  B )  .X.  A
)  =  ( A 
.X.  ( x  .^  B ) )  <->  ( (
y  .^  B )  .X.  A )  =  ( A  .X.  ( y  .^  B ) ) ) )
1110imbi2d 230 . . 3  |-  ( x  =  y  ->  (
( ph  ->  ( ( x  .^  B )  .X.  A )  =  ( A  .X.  ( x  .^  B ) ) )  <-> 
( ph  ->  ( ( y  .^  B )  .X.  A )  =  ( A  .X.  ( y  .^  B ) ) ) ) )
12 oveq1 5925 . . . . . 6  |-  ( x  =  ( y  +  1 )  ->  (
x  .^  B )  =  ( ( y  +  1 )  .^  B ) )
1312oveq1d 5933 . . . . 5  |-  ( x  =  ( y  +  1 )  ->  (
( x  .^  B
)  .X.  A )  =  ( ( ( y  +  1 ) 
.^  B )  .X.  A ) )
1412oveq2d 5934 . . . . 5  |-  ( x  =  ( y  +  1 )  ->  ( A  .X.  ( x  .^  B ) )  =  ( A  .X.  (
( y  +  1 )  .^  B )
) )
1513, 14eqeq12d 2208 . . . 4  |-  ( x  =  ( y  +  1 )  ->  (
( ( x  .^  B )  .X.  A
)  =  ( A 
.X.  ( x  .^  B ) )  <->  ( (
( y  +  1 )  .^  B )  .X.  A )  =  ( A  .X.  ( (
y  +  1 ) 
.^  B ) ) ) )
1615imbi2d 230 . . 3  |-  ( x  =  ( y  +  1 )  ->  (
( ph  ->  ( ( x  .^  B )  .X.  A )  =  ( A  .X.  ( x  .^  B ) ) )  <-> 
( ph  ->  ( ( ( y  +  1 )  .^  B )  .X.  A )  =  ( A  .X.  ( (
y  +  1 ) 
.^  B ) ) ) ) )
17 oveq1 5925 . . . . . 6  |-  ( x  =  K  ->  (
x  .^  B )  =  ( K  .^  B ) )
1817oveq1d 5933 . . . . 5  |-  ( x  =  K  ->  (
( x  .^  B
)  .X.  A )  =  ( ( K 
.^  B )  .X.  A ) )
1917oveq2d 5934 . . . . 5  |-  ( x  =  K  ->  ( A  .X.  ( x  .^  B ) )  =  ( A  .X.  ( K  .^  B ) ) )
2018, 19eqeq12d 2208 . . . 4  |-  ( x  =  K  ->  (
( ( x  .^  B )  .X.  A
)  =  ( A 
.X.  ( x  .^  B ) )  <->  ( ( K  .^  B )  .X.  A )  =  ( A  .X.  ( K  .^  B ) ) ) )
2120imbi2d 230 . . 3  |-  ( x  =  K  ->  (
( ph  ->  ( ( x  .^  B )  .X.  A )  =  ( A  .X.  ( x  .^  B ) ) )  <-> 
( ph  ->  ( ( K  .^  B )  .X.  A )  =  ( A  .X.  ( K  .^  B ) ) ) ) )
22 srgpcomp.b . . . . . . . 8  |-  ( ph  ->  B  e.  S )
23 srgpcomp.r . . . . . . . . 9  |-  ( ph  ->  R  e. SRing )
24 srgpcomp.g . . . . . . . . . 10  |-  G  =  (mulGrp `  R )
25 srgpcomp.s . . . . . . . . . 10  |-  S  =  ( Base `  R
)
2624, 25mgpbasg 13422 . . . . . . . . 9  |-  ( R  e. SRing  ->  S  =  (
Base `  G )
)
2723, 26syl 14 . . . . . . . 8  |-  ( ph  ->  S  =  ( Base `  G ) )
2822, 27eleqtrd 2272 . . . . . . 7  |-  ( ph  ->  B  e.  ( Base `  G ) )
29 eqid 2193 . . . . . . . 8  |-  ( Base `  G )  =  (
Base `  G )
30 eqid 2193 . . . . . . . 8  |-  ( 0g
`  G )  =  ( 0g `  G
)
31 srgpcomp.e . . . . . . . 8  |-  .^  =  (.g
`  G )
3229, 30, 31mulg0 13195 . . . . . . 7  |-  ( B  e.  ( Base `  G
)  ->  ( 0 
.^  B )  =  ( 0g `  G
) )
3328, 32syl 14 . . . . . 6  |-  ( ph  ->  ( 0  .^  B
)  =  ( 0g
`  G ) )
34 eqid 2193 . . . . . . . 8  |-  ( 1r
`  R )  =  ( 1r `  R
)
3524, 34ringidvalg 13457 . . . . . . 7  |-  ( R  e. SRing  ->  ( 1r `  R )  =  ( 0g `  G ) )
3623, 35syl 14 . . . . . 6  |-  ( ph  ->  ( 1r `  R
)  =  ( 0g
`  G ) )
3733, 36eqtr4d 2229 . . . . 5  |-  ( ph  ->  ( 0  .^  B
)  =  ( 1r
`  R ) )
3837oveq1d 5933 . . . 4  |-  ( ph  ->  ( ( 0  .^  B )  .X.  A
)  =  ( ( 1r `  R ) 
.X.  A ) )
39 srgpcomp.a . . . . . 6  |-  ( ph  ->  A  e.  S )
40 srgpcomp.m . . . . . . 7  |-  .X.  =  ( .r `  R )
4125, 40, 34srgridm 13476 . . . . . 6  |-  ( ( R  e. SRing  /\  A  e.  S )  ->  ( A  .X.  ( 1r `  R ) )  =  A )
4223, 39, 41syl2anc 411 . . . . 5  |-  ( ph  ->  ( A  .X.  ( 1r `  R ) )  =  A )
4337oveq2d 5934 . . . . 5  |-  ( ph  ->  ( A  .X.  (
0  .^  B )
)  =  ( A 
.X.  ( 1r `  R ) ) )
4425, 40, 34srglidm 13475 . . . . . 6  |-  ( ( R  e. SRing  /\  A  e.  S )  ->  (
( 1r `  R
)  .X.  A )  =  A )
4523, 39, 44syl2anc 411 . . . . 5  |-  ( ph  ->  ( ( 1r `  R )  .X.  A
)  =  A )
4642, 43, 453eqtr4rd 2237 . . . 4  |-  ( ph  ->  ( ( 1r `  R )  .X.  A
)  =  ( A 
.X.  ( 0  .^  B ) ) )
4738, 46eqtrd 2226 . . 3  |-  ( ph  ->  ( ( 0  .^  B )  .X.  A
)  =  ( A 
.X.  ( 0  .^  B ) ) )
4824srgmgp 13464 . . . . . . . . . . . . . 14  |-  ( R  e. SRing  ->  G  e.  Mnd )
4923, 48syl 14 . . . . . . . . . . . . 13  |-  ( ph  ->  G  e.  Mnd )
5049adantr 276 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  NN0 )  ->  G  e.  Mnd )
51 simpr 110 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  NN0 )  ->  y  e.  NN0 )
5222adantr 276 . . . . . . . . . . . . 13  |-  ( (
ph  /\  y  e.  NN0 )  ->  B  e.  S )
5327adantr 276 . . . . . . . . . . . . 13  |-  ( (
ph  /\  y  e.  NN0 )  ->  S  =  ( Base `  G )
)
5452, 53eleqtrd 2272 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  NN0 )  ->  B  e.  ( Base `  G )
)
55 eqid 2193 . . . . . . . . . . . . 13  |-  ( +g  `  G )  =  ( +g  `  G )
5629, 31, 55mulgnn0p1 13203 . . . . . . . . . . . 12  |-  ( ( G  e.  Mnd  /\  y  e.  NN0  /\  B  e.  ( Base `  G
) )  ->  (
( y  +  1 )  .^  B )  =  ( ( y 
.^  B ) ( +g  `  G ) B ) )
5750, 51, 54, 56syl3anc 1249 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  NN0 )  ->  ( (
y  +  1 ) 
.^  B )  =  ( ( y  .^  B ) ( +g  `  G ) B ) )
5824, 40mgpplusgg 13420 . . . . . . . . . . . . . . 15  |-  ( R  e. SRing  ->  .X.  =  ( +g  `  G ) )
5923, 58syl 14 . . . . . . . . . . . . . 14  |-  ( ph  ->  .X.  =  ( +g  `  G ) )
6059oveqd 5935 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( y  .^  B )  .X.  B
)  =  ( ( y  .^  B )
( +g  `  G ) B ) )
6160eqeq2d 2205 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( y  +  1 )  .^  B )  =  ( ( y  .^  B
)  .X.  B )  <->  ( ( y  +  1 )  .^  B )  =  ( ( y 
.^  B ) ( +g  `  G ) B ) ) )
6261adantr 276 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  NN0 )  ->  ( (
( y  +  1 )  .^  B )  =  ( ( y 
.^  B )  .X.  B )  <->  ( (
y  +  1 ) 
.^  B )  =  ( ( y  .^  B ) ( +g  `  G ) B ) ) )
6357, 62mpbird 167 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  NN0 )  ->  ( (
y  +  1 ) 
.^  B )  =  ( ( y  .^  B )  .X.  B
) )
6463oveq1d 5933 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  NN0 )  ->  ( (
( y  +  1 )  .^  B )  .X.  A )  =  ( ( ( y  .^  B )  .X.  B
)  .X.  A )
)
65 srgpcomp.c . . . . . . . . . . . . 13  |-  ( ph  ->  ( A  .X.  B
)  =  ( B 
.X.  A ) )
6665eqcomd 2199 . . . . . . . . . . . 12  |-  ( ph  ->  ( B  .X.  A
)  =  ( A 
.X.  B ) )
6766adantr 276 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  NN0 )  ->  ( B  .X.  A )  =  ( A  .X.  B )
)
6867oveq2d 5934 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  NN0 )  ->  ( (
y  .^  B )  .X.  ( B  .X.  A
) )  =  ( ( y  .^  B
)  .X.  ( A  .X.  B ) ) )
6923adantr 276 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  NN0 )  ->  R  e. SRing )
7029, 31mulgnn0cl 13208 . . . . . . . . . . . . 13  |-  ( ( G  e.  Mnd  /\  y  e.  NN0  /\  B  e.  ( Base `  G
) )  ->  (
y  .^  B )  e.  ( Base `  G
) )
7150, 51, 54, 70syl3anc 1249 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  NN0 )  ->  ( y  .^  B )  e.  (
Base `  G )
)
7271, 53eleqtrrd 2273 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  NN0 )  ->  ( y  .^  B )  e.  S
)
7339adantr 276 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  NN0 )  ->  A  e.  S )
7425, 40srgass 13467 . . . . . . . . . . 11  |-  ( ( R  e. SRing  /\  (
( y  .^  B
)  e.  S  /\  B  e.  S  /\  A  e.  S )
)  ->  ( (
( y  .^  B
)  .X.  B )  .X.  A )  =  ( ( y  .^  B
)  .X.  ( B  .X.  A ) ) )
7569, 72, 52, 73, 74syl13anc 1251 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  NN0 )  ->  ( (
( y  .^  B
)  .X.  B )  .X.  A )  =  ( ( y  .^  B
)  .X.  ( B  .X.  A ) ) )
7625, 40srgass 13467 . . . . . . . . . . 11  |-  ( ( R  e. SRing  /\  (
( y  .^  B
)  e.  S  /\  A  e.  S  /\  B  e.  S )
)  ->  ( (
( y  .^  B
)  .X.  A )  .X.  B )  =  ( ( y  .^  B
)  .X.  ( A  .X.  B ) ) )
7769, 72, 73, 52, 76syl13anc 1251 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  NN0 )  ->  ( (
( y  .^  B
)  .X.  A )  .X.  B )  =  ( ( y  .^  B
)  .X.  ( A  .X.  B ) ) )
7868, 75, 773eqtr4d 2236 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  NN0 )  ->  ( (
( y  .^  B
)  .X.  B )  .X.  A )  =  ( ( ( y  .^  B )  .X.  A
)  .X.  B )
)
7964, 78eqtrd 2226 . . . . . . . 8  |-  ( (
ph  /\  y  e.  NN0 )  ->  ( (
( y  +  1 )  .^  B )  .X.  A )  =  ( ( ( y  .^  B )  .X.  A
)  .X.  B )
)
8079adantr 276 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  NN0 )  /\  (
( y  .^  B
)  .X.  A )  =  ( A  .X.  ( y  .^  B
) ) )  -> 
( ( ( y  +  1 )  .^  B )  .X.  A
)  =  ( ( ( y  .^  B
)  .X.  A )  .X.  B ) )
81 oveq1 5925 . . . . . . . 8  |-  ( ( ( y  .^  B
)  .X.  A )  =  ( A  .X.  ( y  .^  B
) )  ->  (
( ( y  .^  B )  .X.  A
)  .X.  B )  =  ( ( A 
.X.  ( y  .^  B ) )  .X.  B ) )
8225, 40srgass 13467 . . . . . . . . . 10  |-  ( ( R  e. SRing  /\  ( A  e.  S  /\  ( y  .^  B
)  e.  S  /\  B  e.  S )
)  ->  ( ( A  .X.  ( y  .^  B ) )  .X.  B )  =  ( A  .X.  ( (
y  .^  B )  .X.  B ) ) )
8369, 73, 72, 52, 82syl13anc 1251 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  NN0 )  ->  ( ( A  .X.  ( y  .^  B ) )  .X.  B )  =  ( A  .X.  ( (
y  .^  B )  .X.  B ) ) )
8463eqcomd 2199 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  NN0 )  ->  ( (
y  .^  B )  .X.  B )  =  ( ( y  +  1 )  .^  B )
)
8584oveq2d 5934 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  NN0 )  ->  ( A  .X.  ( ( y  .^  B )  .X.  B
) )  =  ( A  .X.  ( (
y  +  1 ) 
.^  B ) ) )
8683, 85eqtrd 2226 . . . . . . . 8  |-  ( (
ph  /\  y  e.  NN0 )  ->  ( ( A  .X.  ( y  .^  B ) )  .X.  B )  =  ( A  .X.  ( (
y  +  1 ) 
.^  B ) ) )
8781, 86sylan9eqr 2248 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  NN0 )  /\  (
( y  .^  B
)  .X.  A )  =  ( A  .X.  ( y  .^  B
) ) )  -> 
( ( ( y 
.^  B )  .X.  A )  .X.  B
)  =  ( A 
.X.  ( ( y  +  1 )  .^  B ) ) )
8880, 87eqtrd 2226 . . . . . 6  |-  ( ( ( ph  /\  y  e.  NN0 )  /\  (
( y  .^  B
)  .X.  A )  =  ( A  .X.  ( y  .^  B
) ) )  -> 
( ( ( y  +  1 )  .^  B )  .X.  A
)  =  ( A 
.X.  ( ( y  +  1 )  .^  B ) ) )
8988ex 115 . . . . 5  |-  ( (
ph  /\  y  e.  NN0 )  ->  ( (
( y  .^  B
)  .X.  A )  =  ( A  .X.  ( y  .^  B
) )  ->  (
( ( y  +  1 )  .^  B
)  .X.  A )  =  ( A  .X.  ( ( y  +  1 )  .^  B
) ) ) )
9089expcom 116 . . . 4  |-  ( y  e.  NN0  ->  ( ph  ->  ( ( ( y 
.^  B )  .X.  A )  =  ( A  .X.  ( y  .^  B ) )  -> 
( ( ( y  +  1 )  .^  B )  .X.  A
)  =  ( A 
.X.  ( ( y  +  1 )  .^  B ) ) ) ) )
9190a2d 26 . . 3  |-  ( y  e.  NN0  ->  ( (
ph  ->  ( ( y 
.^  B )  .X.  A )  =  ( A  .X.  ( y  .^  B ) ) )  ->  ( ph  ->  ( ( ( y  +  1 )  .^  B
)  .X.  A )  =  ( A  .X.  ( ( y  +  1 )  .^  B
) ) ) ) )
926, 11, 16, 21, 47, 91nn0ind 9431 . 2  |-  ( K  e.  NN0  ->  ( ph  ->  ( ( K  .^  B )  .X.  A
)  =  ( A 
.X.  ( K  .^  B ) ) ) )
931, 92mpcom 36 1  |-  ( ph  ->  ( ( K  .^  B )  .X.  A
)  =  ( A 
.X.  ( K  .^  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   ` cfv 5254  (class class class)co 5918   0cc0 7872   1c1 7873    + caddc 7875   NN0cn0 9240   Basecbs 12618   +g cplusg 12695   .rcmulr 12696   0gc0g 12867   Mndcmnd 12997  .gcmg 13189  mulGrpcmgp 13416   1rcur 13455  SRingcsrg 13459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-2 9041  df-3 9042  df-n0 9241  df-z 9318  df-uz 9593  df-seqfrec 10519  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-plusg 12708  df-mulr 12709  df-0g 12869  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-minusg 13076  df-mulg 13190  df-mgp 13417  df-ur 13456  df-srg 13460
This theorem is referenced by:  srgpcompp  13487
  Copyright terms: Public domain W3C validator