ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subrgugrp Unicode version

Theorem subrgugrp 14117
Description: The units of a subring form a subgroup of the unit group of the original ring. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
subrgugrp.1  |-  S  =  ( Rs  A )
subrgugrp.2  |-  U  =  (Unit `  R )
subrgugrp.3  |-  V  =  (Unit `  S )
subrgugrp.4  |-  G  =  ( (mulGrp `  R
)s 
U )
Assertion
Ref Expression
subrgugrp  |-  ( A  e.  (SubRing `  R
)  ->  V  e.  (SubGrp `  G ) )

Proof of Theorem subrgugrp
Dummy variables  x  y  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subrgugrp.1 . . . 4  |-  S  =  ( Rs  A )
2 subrgugrp.2 . . . 4  |-  U  =  (Unit `  R )
3 subrgugrp.3 . . . 4  |-  V  =  (Unit `  S )
41, 2, 3subrguss 14113 . . 3  |-  ( A  e.  (SubRing `  R
)  ->  V  C_  U
)
5 subrgrcl 14103 . . . 4  |-  ( A  e.  (SubRing `  R
)  ->  R  e.  Ring )
62a1i 9 . . . . 5  |-  ( R  e.  Ring  ->  U  =  (Unit `  R )
)
7 subrgugrp.4 . . . . . 6  |-  G  =  ( (mulGrp `  R
)s 
U )
87a1i 9 . . . . 5  |-  ( R  e.  Ring  ->  G  =  ( (mulGrp `  R
)s 
U ) )
9 ringsrg 13924 . . . . 5  |-  ( R  e.  Ring  ->  R  e. SRing
)
106, 8, 9unitgrpbasd 13992 . . . 4  |-  ( R  e.  Ring  ->  U  =  ( Base `  G
) )
115, 10syl 14 . . 3  |-  ( A  e.  (SubRing `  R
)  ->  U  =  ( Base `  G )
)
124, 11sseqtrd 3239 . 2  |-  ( A  e.  (SubRing `  R
)  ->  V  C_  ( Base `  G ) )
131subrgring 14101 . . 3  |-  ( A  e.  (SubRing `  R
)  ->  S  e.  Ring )
14 eqid 2207 . . . 4  |-  ( 1r
`  S )  =  ( 1r `  S
)
153, 141unit 13984 . . 3  |-  ( S  e.  Ring  ->  ( 1r
`  S )  e.  V )
16 elex2 2793 . . 3  |-  ( ( 1r `  S )  e.  V  ->  E. w  w  e.  V )
1713, 15, 163syl 17 . 2  |-  ( A  e.  (SubRing `  R
)  ->  E. w  w  e.  V )
18 eqid 2207 . . . . . . . . . . . 12  |-  ( .r
`  R )  =  ( .r `  R
)
191, 18ressmulrg 13092 . . . . . . . . . . 11  |-  ( ( A  e.  (SubRing `  R
)  /\  R  e.  Ring )  ->  ( .r `  R )  =  ( .r `  S ) )
205, 19mpdan 421 . . . . . . . . . 10  |-  ( A  e.  (SubRing `  R
)  ->  ( .r `  R )  =  ( .r `  S ) )
21203ad2ant1 1021 . . . . . . . . 9  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V  /\  y  e.  V
)  ->  ( .r `  R )  =  ( .r `  S ) )
2221oveqd 5984 . . . . . . . 8  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V  /\  y  e.  V
)  ->  ( x
( .r `  R
) y )  =  ( x ( .r
`  S ) y ) )
23 eqid 2207 . . . . . . . . . 10  |-  ( .r
`  S )  =  ( .r `  S
)
243, 23unitmulcl 13990 . . . . . . . . 9  |-  ( ( S  e.  Ring  /\  x  e.  V  /\  y  e.  V )  ->  (
x ( .r `  S ) y )  e.  V )
2513, 24syl3an1 1283 . . . . . . . 8  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V  /\  y  e.  V
)  ->  ( x
( .r `  S
) y )  e.  V )
2622, 25eqeltrd 2284 . . . . . . 7  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V  /\  y  e.  V
)  ->  ( x
( .r `  R
) y )  e.  V )
27263expa 1206 . . . . . 6  |-  ( ( ( A  e.  (SubRing `  R )  /\  x  e.  V )  /\  y  e.  V )  ->  (
x ( .r `  R ) y )  e.  V )
2827ralrimiva 2581 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  A. y  e.  V  ( x
( .r `  R
) y )  e.  V )
29 eqid 2207 . . . . . . 7  |-  ( invr `  R )  =  (
invr `  R )
30 eqid 2207 . . . . . . 7  |-  ( invr `  S )  =  (
invr `  S )
311, 29, 3, 30subrginv 14114 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  (
( invr `  R ) `  x )  =  ( ( invr `  S
) `  x )
)
323, 30unitinvcl 14000 . . . . . . 7  |-  ( ( S  e.  Ring  /\  x  e.  V )  ->  (
( invr `  S ) `  x )  e.  V
)
3313, 32sylan 283 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  (
( invr `  S ) `  x )  e.  V
)
3431, 33eqeltrd 2284 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  (
( invr `  R ) `  x )  e.  V
)
3528, 34jca 306 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  ( A. y  e.  V  ( x ( .r
`  R ) y )  e.  V  /\  ( ( invr `  R
) `  x )  e.  V ) )
3635ralrimiva 2581 . . 3  |-  ( A  e.  (SubRing `  R
)  ->  A. x  e.  V  ( A. y  e.  V  (
x ( .r `  R ) y )  e.  V  /\  (
( invr `  R ) `  x )  e.  V
) )
37 eqid 2207 . . . . . . . . . . 11  |-  (mulGrp `  R )  =  (mulGrp `  R )
3837, 18mgpplusgg 13801 . . . . . . . . . 10  |-  ( R  e.  Ring  ->  ( .r
`  R )  =  ( +g  `  (mulGrp `  R ) ) )
39 basfn 13005 . . . . . . . . . . . 12  |-  Base  Fn  _V
40 elex 2788 . . . . . . . . . . . 12  |-  ( R  e.  Ring  ->  R  e. 
_V )
41 funfvex 5616 . . . . . . . . . . . . 13  |-  ( ( Fun  Base  /\  R  e. 
dom  Base )  ->  ( Base `  R )  e. 
_V )
4241funfni 5395 . . . . . . . . . . . 12  |-  ( (
Base  Fn  _V  /\  R  e.  _V )  ->  ( Base `  R )  e. 
_V )
4339, 40, 42sylancr 414 . . . . . . . . . . 11  |-  ( R  e.  Ring  ->  ( Base `  R )  e.  _V )
44 eqidd 2208 . . . . . . . . . . . 12  |-  ( R  e.  Ring  ->  ( Base `  R )  =  (
Base `  R )
)
4544, 6, 9unitssd 13986 . . . . . . . . . . 11  |-  ( R  e.  Ring  ->  U  C_  ( Base `  R )
)
4643, 45ssexd 4200 . . . . . . . . . 10  |-  ( R  e.  Ring  ->  U  e. 
_V )
4737ringmgp 13879 . . . . . . . . . 10  |-  ( R  e.  Ring  ->  (mulGrp `  R )  e.  Mnd )
488, 38, 46, 47ressplusgd 13076 . . . . . . . . 9  |-  ( R  e.  Ring  ->  ( .r
`  R )  =  ( +g  `  G
) )
495, 48syl 14 . . . . . . . 8  |-  ( A  e.  (SubRing `  R
)  ->  ( .r `  R )  =  ( +g  `  G ) )
5049oveqd 5984 . . . . . . 7  |-  ( A  e.  (SubRing `  R
)  ->  ( x
( .r `  R
) y )  =  ( x ( +g  `  G ) y ) )
5150eleq1d 2276 . . . . . 6  |-  ( A  e.  (SubRing `  R
)  ->  ( (
x ( .r `  R ) y )  e.  V  <->  ( x
( +g  `  G ) y )  e.  V
) )
5251ralbidv 2508 . . . . 5  |-  ( A  e.  (SubRing `  R
)  ->  ( A. y  e.  V  (
x ( .r `  R ) y )  e.  V  <->  A. y  e.  V  ( x
( +g  `  G ) y )  e.  V
) )
532a1i 9 . . . . . . . 8  |-  ( A  e.  (SubRing `  R
)  ->  U  =  (Unit `  R ) )
547a1i 9 . . . . . . . 8  |-  ( A  e.  (SubRing `  R
)  ->  G  =  ( (mulGrp `  R )s  U
) )
55 eqidd 2208 . . . . . . . 8  |-  ( A  e.  (SubRing `  R
)  ->  ( invr `  R )  =  (
invr `  R )
)
5653, 54, 55, 5invrfvald 13999 . . . . . . 7  |-  ( A  e.  (SubRing `  R
)  ->  ( invr `  R )  =  ( invg `  G
) )
5756fveq1d 5601 . . . . . 6  |-  ( A  e.  (SubRing `  R
)  ->  ( ( invr `  R ) `  x )  =  ( ( invg `  G ) `  x
) )
5857eleq1d 2276 . . . . 5  |-  ( A  e.  (SubRing `  R
)  ->  ( (
( invr `  R ) `  x )  e.  V  <->  ( ( invg `  G ) `  x
)  e.  V ) )
5952, 58anbi12d 473 . . . 4  |-  ( A  e.  (SubRing `  R
)  ->  ( ( A. y  e.  V  ( x ( .r
`  R ) y )  e.  V  /\  ( ( invr `  R
) `  x )  e.  V )  <->  ( A. y  e.  V  (
x ( +g  `  G
) y )  e.  V  /\  ( ( invg `  G
) `  x )  e.  V ) ) )
6059ralbidv 2508 . . 3  |-  ( A  e.  (SubRing `  R
)  ->  ( A. x  e.  V  ( A. y  e.  V  ( x ( .r
`  R ) y )  e.  V  /\  ( ( invr `  R
) `  x )  e.  V )  <->  A. x  e.  V  ( A. y  e.  V  (
x ( +g  `  G
) y )  e.  V  /\  ( ( invg `  G
) `  x )  e.  V ) ) )
6136, 60mpbid 147 . 2  |-  ( A  e.  (SubRing `  R
)  ->  A. x  e.  V  ( A. y  e.  V  (
x ( +g  `  G
) y )  e.  V  /\  ( ( invg `  G
) `  x )  e.  V ) )
622, 7unitgrp 13993 . . 3  |-  ( R  e.  Ring  ->  G  e. 
Grp )
63 eqid 2207 . . . 4  |-  ( Base `  G )  =  (
Base `  G )
64 eqid 2207 . . . 4  |-  ( +g  `  G )  =  ( +g  `  G )
65 eqid 2207 . . . 4  |-  ( invg `  G )  =  ( invg `  G )
6663, 64, 65issubg2m 13640 . . 3  |-  ( G  e.  Grp  ->  ( V  e.  (SubGrp `  G
)  <->  ( V  C_  ( Base `  G )  /\  E. w  w  e.  V  /\  A. x  e.  V  ( A. y  e.  V  (
x ( +g  `  G
) y )  e.  V  /\  ( ( invg `  G
) `  x )  e.  V ) ) ) )
675, 62, 663syl 17 . 2  |-  ( A  e.  (SubRing `  R
)  ->  ( V  e.  (SubGrp `  G )  <->  ( V  C_  ( Base `  G )  /\  E. w  w  e.  V  /\  A. x  e.  V  ( A. y  e.  V  ( x ( +g  `  G ) y )  e.  V  /\  (
( invg `  G ) `  x
)  e.  V ) ) ) )
6812, 17, 61, 67mpbir3and 1183 1  |-  ( A  e.  (SubRing `  R
)  ->  V  e.  (SubGrp `  G ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373   E.wex 1516    e. wcel 2178   A.wral 2486   _Vcvv 2776    C_ wss 3174    Fn wfn 5285   ` cfv 5290  (class class class)co 5967   Basecbs 12947   ↾s cress 12948   +g cplusg 13024   .rcmulr 13025   Mndcmnd 13363   Grpcgrp 13447   invgcminusg 13448  SubGrpcsubg 13618  mulGrpcmgp 13797   1rcur 13836   Ringcrg 13873  Unitcui 13964   invrcinvr 13997  SubRingcsubrg 14094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-pre-ltirr 8072  ax-pre-lttrn 8074  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-tpos 6354  df-pnf 8144  df-mnf 8145  df-ltxr 8147  df-inn 9072  df-2 9130  df-3 9131  df-ndx 12950  df-slot 12951  df-base 12953  df-sets 12954  df-iress 12955  df-plusg 13037  df-mulr 13038  df-0g 13205  df-mgm 13303  df-sgrp 13349  df-mnd 13364  df-grp 13450  df-minusg 13451  df-subg 13621  df-cmn 13737  df-abl 13738  df-mgp 13798  df-ur 13837  df-srg 13841  df-ring 13875  df-oppr 13945  df-dvdsr 13966  df-unit 13967  df-invr 13998  df-subrg 14096
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator