ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subrgugrp Unicode version

Theorem subrgugrp 14204
Description: The units of a subring form a subgroup of the unit group of the original ring. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
subrgugrp.1  |-  S  =  ( Rs  A )
subrgugrp.2  |-  U  =  (Unit `  R )
subrgugrp.3  |-  V  =  (Unit `  S )
subrgugrp.4  |-  G  =  ( (mulGrp `  R
)s 
U )
Assertion
Ref Expression
subrgugrp  |-  ( A  e.  (SubRing `  R
)  ->  V  e.  (SubGrp `  G ) )

Proof of Theorem subrgugrp
Dummy variables  x  y  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subrgugrp.1 . . . 4  |-  S  =  ( Rs  A )
2 subrgugrp.2 . . . 4  |-  U  =  (Unit `  R )
3 subrgugrp.3 . . . 4  |-  V  =  (Unit `  S )
41, 2, 3subrguss 14200 . . 3  |-  ( A  e.  (SubRing `  R
)  ->  V  C_  U
)
5 subrgrcl 14190 . . . 4  |-  ( A  e.  (SubRing `  R
)  ->  R  e.  Ring )
62a1i 9 . . . . 5  |-  ( R  e.  Ring  ->  U  =  (Unit `  R )
)
7 subrgugrp.4 . . . . . 6  |-  G  =  ( (mulGrp `  R
)s 
U )
87a1i 9 . . . . 5  |-  ( R  e.  Ring  ->  G  =  ( (mulGrp `  R
)s 
U ) )
9 ringsrg 14010 . . . . 5  |-  ( R  e.  Ring  ->  R  e. SRing
)
106, 8, 9unitgrpbasd 14079 . . . 4  |-  ( R  e.  Ring  ->  U  =  ( Base `  G
) )
115, 10syl 14 . . 3  |-  ( A  e.  (SubRing `  R
)  ->  U  =  ( Base `  G )
)
124, 11sseqtrd 3262 . 2  |-  ( A  e.  (SubRing `  R
)  ->  V  C_  ( Base `  G ) )
131subrgring 14188 . . 3  |-  ( A  e.  (SubRing `  R
)  ->  S  e.  Ring )
14 eqid 2229 . . . 4  |-  ( 1r
`  S )  =  ( 1r `  S
)
153, 141unit 14071 . . 3  |-  ( S  e.  Ring  ->  ( 1r
`  S )  e.  V )
16 elex2 2816 . . 3  |-  ( ( 1r `  S )  e.  V  ->  E. w  w  e.  V )
1713, 15, 163syl 17 . 2  |-  ( A  e.  (SubRing `  R
)  ->  E. w  w  e.  V )
18 eqid 2229 . . . . . . . . . . . 12  |-  ( .r
`  R )  =  ( .r `  R
)
191, 18ressmulrg 13178 . . . . . . . . . . 11  |-  ( ( A  e.  (SubRing `  R
)  /\  R  e.  Ring )  ->  ( .r `  R )  =  ( .r `  S ) )
205, 19mpdan 421 . . . . . . . . . 10  |-  ( A  e.  (SubRing `  R
)  ->  ( .r `  R )  =  ( .r `  S ) )
21203ad2ant1 1042 . . . . . . . . 9  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V  /\  y  e.  V
)  ->  ( .r `  R )  =  ( .r `  S ) )
2221oveqd 6018 . . . . . . . 8  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V  /\  y  e.  V
)  ->  ( x
( .r `  R
) y )  =  ( x ( .r
`  S ) y ) )
23 eqid 2229 . . . . . . . . . 10  |-  ( .r
`  S )  =  ( .r `  S
)
243, 23unitmulcl 14077 . . . . . . . . 9  |-  ( ( S  e.  Ring  /\  x  e.  V  /\  y  e.  V )  ->  (
x ( .r `  S ) y )  e.  V )
2513, 24syl3an1 1304 . . . . . . . 8  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V  /\  y  e.  V
)  ->  ( x
( .r `  S
) y )  e.  V )
2622, 25eqeltrd 2306 . . . . . . 7  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V  /\  y  e.  V
)  ->  ( x
( .r `  R
) y )  e.  V )
27263expa 1227 . . . . . 6  |-  ( ( ( A  e.  (SubRing `  R )  /\  x  e.  V )  /\  y  e.  V )  ->  (
x ( .r `  R ) y )  e.  V )
2827ralrimiva 2603 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  A. y  e.  V  ( x
( .r `  R
) y )  e.  V )
29 eqid 2229 . . . . . . 7  |-  ( invr `  R )  =  (
invr `  R )
30 eqid 2229 . . . . . . 7  |-  ( invr `  S )  =  (
invr `  S )
311, 29, 3, 30subrginv 14201 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  (
( invr `  R ) `  x )  =  ( ( invr `  S
) `  x )
)
323, 30unitinvcl 14087 . . . . . . 7  |-  ( ( S  e.  Ring  /\  x  e.  V )  ->  (
( invr `  S ) `  x )  e.  V
)
3313, 32sylan 283 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  (
( invr `  S ) `  x )  e.  V
)
3431, 33eqeltrd 2306 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  (
( invr `  R ) `  x )  e.  V
)
3528, 34jca 306 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  ( A. y  e.  V  ( x ( .r
`  R ) y )  e.  V  /\  ( ( invr `  R
) `  x )  e.  V ) )
3635ralrimiva 2603 . . 3  |-  ( A  e.  (SubRing `  R
)  ->  A. x  e.  V  ( A. y  e.  V  (
x ( .r `  R ) y )  e.  V  /\  (
( invr `  R ) `  x )  e.  V
) )
37 eqid 2229 . . . . . . . . . . 11  |-  (mulGrp `  R )  =  (mulGrp `  R )
3837, 18mgpplusgg 13887 . . . . . . . . . 10  |-  ( R  e.  Ring  ->  ( .r
`  R )  =  ( +g  `  (mulGrp `  R ) ) )
39 basfn 13091 . . . . . . . . . . . 12  |-  Base  Fn  _V
40 elex 2811 . . . . . . . . . . . 12  |-  ( R  e.  Ring  ->  R  e. 
_V )
41 funfvex 5644 . . . . . . . . . . . . 13  |-  ( ( Fun  Base  /\  R  e. 
dom  Base )  ->  ( Base `  R )  e. 
_V )
4241funfni 5423 . . . . . . . . . . . 12  |-  ( (
Base  Fn  _V  /\  R  e.  _V )  ->  ( Base `  R )  e. 
_V )
4339, 40, 42sylancr 414 . . . . . . . . . . 11  |-  ( R  e.  Ring  ->  ( Base `  R )  e.  _V )
44 eqidd 2230 . . . . . . . . . . . 12  |-  ( R  e.  Ring  ->  ( Base `  R )  =  (
Base `  R )
)
4544, 6, 9unitssd 14073 . . . . . . . . . . 11  |-  ( R  e.  Ring  ->  U  C_  ( Base `  R )
)
4643, 45ssexd 4224 . . . . . . . . . 10  |-  ( R  e.  Ring  ->  U  e. 
_V )
4737ringmgp 13965 . . . . . . . . . 10  |-  ( R  e.  Ring  ->  (mulGrp `  R )  e.  Mnd )
488, 38, 46, 47ressplusgd 13162 . . . . . . . . 9  |-  ( R  e.  Ring  ->  ( .r
`  R )  =  ( +g  `  G
) )
495, 48syl 14 . . . . . . . 8  |-  ( A  e.  (SubRing `  R
)  ->  ( .r `  R )  =  ( +g  `  G ) )
5049oveqd 6018 . . . . . . 7  |-  ( A  e.  (SubRing `  R
)  ->  ( x
( .r `  R
) y )  =  ( x ( +g  `  G ) y ) )
5150eleq1d 2298 . . . . . 6  |-  ( A  e.  (SubRing `  R
)  ->  ( (
x ( .r `  R ) y )  e.  V  <->  ( x
( +g  `  G ) y )  e.  V
) )
5251ralbidv 2530 . . . . 5  |-  ( A  e.  (SubRing `  R
)  ->  ( A. y  e.  V  (
x ( .r `  R ) y )  e.  V  <->  A. y  e.  V  ( x
( +g  `  G ) y )  e.  V
) )
532a1i 9 . . . . . . . 8  |-  ( A  e.  (SubRing `  R
)  ->  U  =  (Unit `  R ) )
547a1i 9 . . . . . . . 8  |-  ( A  e.  (SubRing `  R
)  ->  G  =  ( (mulGrp `  R )s  U
) )
55 eqidd 2230 . . . . . . . 8  |-  ( A  e.  (SubRing `  R
)  ->  ( invr `  R )  =  (
invr `  R )
)
5653, 54, 55, 5invrfvald 14086 . . . . . . 7  |-  ( A  e.  (SubRing `  R
)  ->  ( invr `  R )  =  ( invg `  G
) )
5756fveq1d 5629 . . . . . 6  |-  ( A  e.  (SubRing `  R
)  ->  ( ( invr `  R ) `  x )  =  ( ( invg `  G ) `  x
) )
5857eleq1d 2298 . . . . 5  |-  ( A  e.  (SubRing `  R
)  ->  ( (
( invr `  R ) `  x )  e.  V  <->  ( ( invg `  G ) `  x
)  e.  V ) )
5952, 58anbi12d 473 . . . 4  |-  ( A  e.  (SubRing `  R
)  ->  ( ( A. y  e.  V  ( x ( .r
`  R ) y )  e.  V  /\  ( ( invr `  R
) `  x )  e.  V )  <->  ( A. y  e.  V  (
x ( +g  `  G
) y )  e.  V  /\  ( ( invg `  G
) `  x )  e.  V ) ) )
6059ralbidv 2530 . . 3  |-  ( A  e.  (SubRing `  R
)  ->  ( A. x  e.  V  ( A. y  e.  V  ( x ( .r
`  R ) y )  e.  V  /\  ( ( invr `  R
) `  x )  e.  V )  <->  A. x  e.  V  ( A. y  e.  V  (
x ( +g  `  G
) y )  e.  V  /\  ( ( invg `  G
) `  x )  e.  V ) ) )
6136, 60mpbid 147 . 2  |-  ( A  e.  (SubRing `  R
)  ->  A. x  e.  V  ( A. y  e.  V  (
x ( +g  `  G
) y )  e.  V  /\  ( ( invg `  G
) `  x )  e.  V ) )
622, 7unitgrp 14080 . . 3  |-  ( R  e.  Ring  ->  G  e. 
Grp )
63 eqid 2229 . . . 4  |-  ( Base `  G )  =  (
Base `  G )
64 eqid 2229 . . . 4  |-  ( +g  `  G )  =  ( +g  `  G )
65 eqid 2229 . . . 4  |-  ( invg `  G )  =  ( invg `  G )
6663, 64, 65issubg2m 13726 . . 3  |-  ( G  e.  Grp  ->  ( V  e.  (SubGrp `  G
)  <->  ( V  C_  ( Base `  G )  /\  E. w  w  e.  V  /\  A. x  e.  V  ( A. y  e.  V  (
x ( +g  `  G
) y )  e.  V  /\  ( ( invg `  G
) `  x )  e.  V ) ) ) )
675, 62, 663syl 17 . 2  |-  ( A  e.  (SubRing `  R
)  ->  ( V  e.  (SubGrp `  G )  <->  ( V  C_  ( Base `  G )  /\  E. w  w  e.  V  /\  A. x  e.  V  ( A. y  e.  V  ( x ( +g  `  G ) y )  e.  V  /\  (
( invg `  G ) `  x
)  e.  V ) ) ) )
6812, 17, 61, 67mpbir3and 1204 1  |-  ( A  e.  (SubRing `  R
)  ->  V  e.  (SubGrp `  G ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 1002    = wceq 1395   E.wex 1538    e. wcel 2200   A.wral 2508   _Vcvv 2799    C_ wss 3197    Fn wfn 5313   ` cfv 5318  (class class class)co 6001   Basecbs 13032   ↾s cress 13033   +g cplusg 13110   .rcmulr 13111   Mndcmnd 13449   Grpcgrp 13533   invgcminusg 13534  SubGrpcsubg 13704  mulGrpcmgp 13883   1rcur 13922   Ringcrg 13959  Unitcui 14050   invrcinvr 14084  SubRingcsubrg 14181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-pre-ltirr 8111  ax-pre-lttrn 8113  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-tpos 6391  df-pnf 8183  df-mnf 8184  df-ltxr 8186  df-inn 9111  df-2 9169  df-3 9170  df-ndx 13035  df-slot 13036  df-base 13038  df-sets 13039  df-iress 13040  df-plusg 13123  df-mulr 13124  df-0g 13291  df-mgm 13389  df-sgrp 13435  df-mnd 13450  df-grp 13536  df-minusg 13537  df-subg 13707  df-cmn 13823  df-abl 13824  df-mgp 13884  df-ur 13923  df-srg 13927  df-ring 13961  df-oppr 14031  df-dvdsr 14052  df-unit 14053  df-invr 14085  df-subrg 14183
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator