ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subrgugrp Unicode version

Theorem subrgugrp 14002
Description: The units of a subring form a subgroup of the unit group of the original ring. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
subrgugrp.1  |-  S  =  ( Rs  A )
subrgugrp.2  |-  U  =  (Unit `  R )
subrgugrp.3  |-  V  =  (Unit `  S )
subrgugrp.4  |-  G  =  ( (mulGrp `  R
)s 
U )
Assertion
Ref Expression
subrgugrp  |-  ( A  e.  (SubRing `  R
)  ->  V  e.  (SubGrp `  G ) )

Proof of Theorem subrgugrp
Dummy variables  x  y  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subrgugrp.1 . . . 4  |-  S  =  ( Rs  A )
2 subrgugrp.2 . . . 4  |-  U  =  (Unit `  R )
3 subrgugrp.3 . . . 4  |-  V  =  (Unit `  S )
41, 2, 3subrguss 13998 . . 3  |-  ( A  e.  (SubRing `  R
)  ->  V  C_  U
)
5 subrgrcl 13988 . . . 4  |-  ( A  e.  (SubRing `  R
)  ->  R  e.  Ring )
62a1i 9 . . . . 5  |-  ( R  e.  Ring  ->  U  =  (Unit `  R )
)
7 subrgugrp.4 . . . . . 6  |-  G  =  ( (mulGrp `  R
)s 
U )
87a1i 9 . . . . 5  |-  ( R  e.  Ring  ->  G  =  ( (mulGrp `  R
)s 
U ) )
9 ringsrg 13809 . . . . 5  |-  ( R  e.  Ring  ->  R  e. SRing
)
106, 8, 9unitgrpbasd 13877 . . . 4  |-  ( R  e.  Ring  ->  U  =  ( Base `  G
) )
115, 10syl 14 . . 3  |-  ( A  e.  (SubRing `  R
)  ->  U  =  ( Base `  G )
)
124, 11sseqtrd 3231 . 2  |-  ( A  e.  (SubRing `  R
)  ->  V  C_  ( Base `  G ) )
131subrgring 13986 . . 3  |-  ( A  e.  (SubRing `  R
)  ->  S  e.  Ring )
14 eqid 2205 . . . 4  |-  ( 1r
`  S )  =  ( 1r `  S
)
153, 141unit 13869 . . 3  |-  ( S  e.  Ring  ->  ( 1r
`  S )  e.  V )
16 elex2 2788 . . 3  |-  ( ( 1r `  S )  e.  V  ->  E. w  w  e.  V )
1713, 15, 163syl 17 . 2  |-  ( A  e.  (SubRing `  R
)  ->  E. w  w  e.  V )
18 eqid 2205 . . . . . . . . . . . 12  |-  ( .r
`  R )  =  ( .r `  R
)
191, 18ressmulrg 12977 . . . . . . . . . . 11  |-  ( ( A  e.  (SubRing `  R
)  /\  R  e.  Ring )  ->  ( .r `  R )  =  ( .r `  S ) )
205, 19mpdan 421 . . . . . . . . . 10  |-  ( A  e.  (SubRing `  R
)  ->  ( .r `  R )  =  ( .r `  S ) )
21203ad2ant1 1021 . . . . . . . . 9  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V  /\  y  e.  V
)  ->  ( .r `  R )  =  ( .r `  S ) )
2221oveqd 5961 . . . . . . . 8  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V  /\  y  e.  V
)  ->  ( x
( .r `  R
) y )  =  ( x ( .r
`  S ) y ) )
23 eqid 2205 . . . . . . . . . 10  |-  ( .r
`  S )  =  ( .r `  S
)
243, 23unitmulcl 13875 . . . . . . . . 9  |-  ( ( S  e.  Ring  /\  x  e.  V  /\  y  e.  V )  ->  (
x ( .r `  S ) y )  e.  V )
2513, 24syl3an1 1283 . . . . . . . 8  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V  /\  y  e.  V
)  ->  ( x
( .r `  S
) y )  e.  V )
2622, 25eqeltrd 2282 . . . . . . 7  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V  /\  y  e.  V
)  ->  ( x
( .r `  R
) y )  e.  V )
27263expa 1206 . . . . . 6  |-  ( ( ( A  e.  (SubRing `  R )  /\  x  e.  V )  /\  y  e.  V )  ->  (
x ( .r `  R ) y )  e.  V )
2827ralrimiva 2579 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  A. y  e.  V  ( x
( .r `  R
) y )  e.  V )
29 eqid 2205 . . . . . . 7  |-  ( invr `  R )  =  (
invr `  R )
30 eqid 2205 . . . . . . 7  |-  ( invr `  S )  =  (
invr `  S )
311, 29, 3, 30subrginv 13999 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  (
( invr `  R ) `  x )  =  ( ( invr `  S
) `  x )
)
323, 30unitinvcl 13885 . . . . . . 7  |-  ( ( S  e.  Ring  /\  x  e.  V )  ->  (
( invr `  S ) `  x )  e.  V
)
3313, 32sylan 283 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  (
( invr `  S ) `  x )  e.  V
)
3431, 33eqeltrd 2282 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  (
( invr `  R ) `  x )  e.  V
)
3528, 34jca 306 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  V )  ->  ( A. y  e.  V  ( x ( .r
`  R ) y )  e.  V  /\  ( ( invr `  R
) `  x )  e.  V ) )
3635ralrimiva 2579 . . 3  |-  ( A  e.  (SubRing `  R
)  ->  A. x  e.  V  ( A. y  e.  V  (
x ( .r `  R ) y )  e.  V  /\  (
( invr `  R ) `  x )  e.  V
) )
37 eqid 2205 . . . . . . . . . . 11  |-  (mulGrp `  R )  =  (mulGrp `  R )
3837, 18mgpplusgg 13686 . . . . . . . . . 10  |-  ( R  e.  Ring  ->  ( .r
`  R )  =  ( +g  `  (mulGrp `  R ) ) )
39 basfn 12890 . . . . . . . . . . . 12  |-  Base  Fn  _V
40 elex 2783 . . . . . . . . . . . 12  |-  ( R  e.  Ring  ->  R  e. 
_V )
41 funfvex 5593 . . . . . . . . . . . . 13  |-  ( ( Fun  Base  /\  R  e. 
dom  Base )  ->  ( Base `  R )  e. 
_V )
4241funfni 5376 . . . . . . . . . . . 12  |-  ( (
Base  Fn  _V  /\  R  e.  _V )  ->  ( Base `  R )  e. 
_V )
4339, 40, 42sylancr 414 . . . . . . . . . . 11  |-  ( R  e.  Ring  ->  ( Base `  R )  e.  _V )
44 eqidd 2206 . . . . . . . . . . . 12  |-  ( R  e.  Ring  ->  ( Base `  R )  =  (
Base `  R )
)
4544, 6, 9unitssd 13871 . . . . . . . . . . 11  |-  ( R  e.  Ring  ->  U  C_  ( Base `  R )
)
4643, 45ssexd 4184 . . . . . . . . . 10  |-  ( R  e.  Ring  ->  U  e. 
_V )
4737ringmgp 13764 . . . . . . . . . 10  |-  ( R  e.  Ring  ->  (mulGrp `  R )  e.  Mnd )
488, 38, 46, 47ressplusgd 12961 . . . . . . . . 9  |-  ( R  e.  Ring  ->  ( .r
`  R )  =  ( +g  `  G
) )
495, 48syl 14 . . . . . . . 8  |-  ( A  e.  (SubRing `  R
)  ->  ( .r `  R )  =  ( +g  `  G ) )
5049oveqd 5961 . . . . . . 7  |-  ( A  e.  (SubRing `  R
)  ->  ( x
( .r `  R
) y )  =  ( x ( +g  `  G ) y ) )
5150eleq1d 2274 . . . . . 6  |-  ( A  e.  (SubRing `  R
)  ->  ( (
x ( .r `  R ) y )  e.  V  <->  ( x
( +g  `  G ) y )  e.  V
) )
5251ralbidv 2506 . . . . 5  |-  ( A  e.  (SubRing `  R
)  ->  ( A. y  e.  V  (
x ( .r `  R ) y )  e.  V  <->  A. y  e.  V  ( x
( +g  `  G ) y )  e.  V
) )
532a1i 9 . . . . . . . 8  |-  ( A  e.  (SubRing `  R
)  ->  U  =  (Unit `  R ) )
547a1i 9 . . . . . . . 8  |-  ( A  e.  (SubRing `  R
)  ->  G  =  ( (mulGrp `  R )s  U
) )
55 eqidd 2206 . . . . . . . 8  |-  ( A  e.  (SubRing `  R
)  ->  ( invr `  R )  =  (
invr `  R )
)
5653, 54, 55, 5invrfvald 13884 . . . . . . 7  |-  ( A  e.  (SubRing `  R
)  ->  ( invr `  R )  =  ( invg `  G
) )
5756fveq1d 5578 . . . . . 6  |-  ( A  e.  (SubRing `  R
)  ->  ( ( invr `  R ) `  x )  =  ( ( invg `  G ) `  x
) )
5857eleq1d 2274 . . . . 5  |-  ( A  e.  (SubRing `  R
)  ->  ( (
( invr `  R ) `  x )  e.  V  <->  ( ( invg `  G ) `  x
)  e.  V ) )
5952, 58anbi12d 473 . . . 4  |-  ( A  e.  (SubRing `  R
)  ->  ( ( A. y  e.  V  ( x ( .r
`  R ) y )  e.  V  /\  ( ( invr `  R
) `  x )  e.  V )  <->  ( A. y  e.  V  (
x ( +g  `  G
) y )  e.  V  /\  ( ( invg `  G
) `  x )  e.  V ) ) )
6059ralbidv 2506 . . 3  |-  ( A  e.  (SubRing `  R
)  ->  ( A. x  e.  V  ( A. y  e.  V  ( x ( .r
`  R ) y )  e.  V  /\  ( ( invr `  R
) `  x )  e.  V )  <->  A. x  e.  V  ( A. y  e.  V  (
x ( +g  `  G
) y )  e.  V  /\  ( ( invg `  G
) `  x )  e.  V ) ) )
6136, 60mpbid 147 . 2  |-  ( A  e.  (SubRing `  R
)  ->  A. x  e.  V  ( A. y  e.  V  (
x ( +g  `  G
) y )  e.  V  /\  ( ( invg `  G
) `  x )  e.  V ) )
622, 7unitgrp 13878 . . 3  |-  ( R  e.  Ring  ->  G  e. 
Grp )
63 eqid 2205 . . . 4  |-  ( Base `  G )  =  (
Base `  G )
64 eqid 2205 . . . 4  |-  ( +g  `  G )  =  ( +g  `  G )
65 eqid 2205 . . . 4  |-  ( invg `  G )  =  ( invg `  G )
6663, 64, 65issubg2m 13525 . . 3  |-  ( G  e.  Grp  ->  ( V  e.  (SubGrp `  G
)  <->  ( V  C_  ( Base `  G )  /\  E. w  w  e.  V  /\  A. x  e.  V  ( A. y  e.  V  (
x ( +g  `  G
) y )  e.  V  /\  ( ( invg `  G
) `  x )  e.  V ) ) ) )
675, 62, 663syl 17 . 2  |-  ( A  e.  (SubRing `  R
)  ->  ( V  e.  (SubGrp `  G )  <->  ( V  C_  ( Base `  G )  /\  E. w  w  e.  V  /\  A. x  e.  V  ( A. y  e.  V  ( x ( +g  `  G ) y )  e.  V  /\  (
( invg `  G ) `  x
)  e.  V ) ) ) )
6812, 17, 61, 67mpbir3and 1183 1  |-  ( A  e.  (SubRing `  R
)  ->  V  e.  (SubGrp `  G ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373   E.wex 1515    e. wcel 2176   A.wral 2484   _Vcvv 2772    C_ wss 3166    Fn wfn 5266   ` cfv 5271  (class class class)co 5944   Basecbs 12832   ↾s cress 12833   +g cplusg 12909   .rcmulr 12910   Mndcmnd 13248   Grpcgrp 13332   invgcminusg 13333  SubGrpcsubg 13503  mulGrpcmgp 13682   1rcur 13721   Ringcrg 13758  Unitcui 13849   invrcinvr 13882  SubRingcsubrg 13979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-pre-ltirr 8037  ax-pre-lttrn 8039  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-tpos 6331  df-pnf 8109  df-mnf 8110  df-ltxr 8112  df-inn 9037  df-2 9095  df-3 9096  df-ndx 12835  df-slot 12836  df-base 12838  df-sets 12839  df-iress 12840  df-plusg 12922  df-mulr 12923  df-0g 13090  df-mgm 13188  df-sgrp 13234  df-mnd 13249  df-grp 13335  df-minusg 13336  df-subg 13506  df-cmn 13622  df-abl 13623  df-mgp 13683  df-ur 13722  df-srg 13726  df-ring 13760  df-oppr 13830  df-dvdsr 13851  df-unit 13852  df-invr 13883  df-subrg 13981
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator