ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvbss Unicode version

Theorem dvbss 13448
Description: The set of differentiable points is a subset of the domain of the function. (Contributed by Mario Carneiro, 6-Aug-2014.) (Revised by Mario Carneiro, 9-Feb-2015.)
Hypotheses
Ref Expression
dvcl.s  |-  ( ph  ->  S  C_  CC )
dvcl.f  |-  ( ph  ->  F : A --> CC )
dvcl.a  |-  ( ph  ->  A  C_  S )
Assertion
Ref Expression
dvbss  |-  ( ph  ->  dom  ( S  _D  F )  C_  A
)

Proof of Theorem dvbss
StepHypRef Expression
1 dvcl.s . . 3  |-  ( ph  ->  S  C_  CC )
2 dvcl.f . . 3  |-  ( ph  ->  F : A --> CC )
3 dvcl.a . . 3  |-  ( ph  ->  A  C_  S )
4 eqid 2170 . . 3  |-  ( (
MetOpen `  ( abs  o.  -  ) )t  S )  =  ( ( MetOpen `  ( abs  o.  -  )
)t 
S )
5 eqid 2170 . . 3  |-  ( MetOpen `  ( abs  o.  -  )
)  =  ( MetOpen `  ( abs  o.  -  )
)
61, 2, 3, 4, 5dvbssntrcntop 13447 . 2  |-  ( ph  ->  dom  ( S  _D  F )  C_  (
( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  S ) ) `  A ) )
75cntoptop 13327 . . . 4  |-  ( MetOpen `  ( abs  o.  -  )
)  e.  Top
8 cnex 7898 . . . . 5  |-  CC  e.  _V
9 ssexg 4128 . . . . 5  |-  ( ( S  C_  CC  /\  CC  e.  _V )  ->  S  e.  _V )
101, 8, 9sylancl 411 . . . 4  |-  ( ph  ->  S  e.  _V )
11 resttop 12964 . . . 4  |-  ( ( ( MetOpen `  ( abs  o. 
-  ) )  e. 
Top  /\  S  e.  _V )  ->  ( (
MetOpen `  ( abs  o.  -  ) )t  S )  e.  Top )
127, 10, 11sylancr 412 . . 3  |-  ( ph  ->  ( ( MetOpen `  ( abs  o.  -  ) )t  S )  e.  Top )
135cntoptopon 13326 . . . . . 6  |-  ( MetOpen `  ( abs  o.  -  )
)  e.  (TopOn `  CC )
14 resttopon 12965 . . . . . 6  |-  ( ( ( MetOpen `  ( abs  o. 
-  ) )  e.  (TopOn `  CC )  /\  S  C_  CC )  ->  ( ( MetOpen `  ( abs  o.  -  )
)t 
S )  e.  (TopOn `  S ) )
1513, 1, 14sylancr 412 . . . . 5  |-  ( ph  ->  ( ( MetOpen `  ( abs  o.  -  ) )t  S )  e.  (TopOn `  S ) )
16 toponuni 12807 . . . . 5  |-  ( ( ( MetOpen `  ( abs  o. 
-  ) )t  S )  e.  (TopOn `  S
)  ->  S  =  U. ( ( MetOpen `  ( abs  o.  -  ) )t  S ) )
1715, 16syl 14 . . . 4  |-  ( ph  ->  S  =  U. (
( MetOpen `  ( abs  o. 
-  ) )t  S ) )
183, 17sseqtrd 3185 . . 3  |-  ( ph  ->  A  C_  U. (
( MetOpen `  ( abs  o. 
-  ) )t  S ) )
19 eqid 2170 . . . 4  |-  U. (
( MetOpen `  ( abs  o. 
-  ) )t  S )  =  U. ( (
MetOpen `  ( abs  o.  -  ) )t  S )
2019ntrss2 12915 . . 3  |-  ( ( ( ( MetOpen `  ( abs  o.  -  ) )t  S )  e.  Top  /\  A  C_  U. ( (
MetOpen `  ( abs  o.  -  ) )t  S ) )  ->  ( ( int `  ( ( MetOpen `  ( abs  o.  -  )
)t 
S ) ) `  A )  C_  A
)
2112, 18, 20syl2anc 409 . 2  |-  ( ph  ->  ( ( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  S ) ) `  A ) 
C_  A )
226, 21sstrd 3157 1  |-  ( ph  ->  dom  ( S  _D  F )  C_  A
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1348    e. wcel 2141   _Vcvv 2730    C_ wss 3121   U.cuni 3796   dom cdm 4611    o. ccom 4615   -->wf 5194   ` cfv 5198  (class class class)co 5853   CCcc 7772    - cmin 8090   abscabs 10961   ↾t crest 12579   MetOpencmopn 12779   Topctop 12789  TopOnctopon 12802   intcnt 12887    _D cdv 13418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-isom 5207  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-map 6628  df-pm 6629  df-sup 6961  df-inf 6962  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-xneg 9729  df-xadd 9730  df-seqfrec 10402  df-exp 10476  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-rest 12581  df-topgen 12600  df-psmet 12781  df-xmet 12782  df-met 12783  df-bl 12784  df-mopn 12785  df-top 12790  df-topon 12803  df-bases 12835  df-ntr 12890  df-limced 13419  df-dvap 13420
This theorem is referenced by:  dvbsssg  13449  dvidlemap  13454  dviaddf  13463  dvimulf  13464  dvcoapbr  13465  dvcjbr  13466  dvrecap  13471
  Copyright terms: Public domain W3C validator