ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvbss Unicode version

Theorem dvbss 15242
Description: The set of differentiable points is a subset of the domain of the function. (Contributed by Mario Carneiro, 6-Aug-2014.) (Revised by Mario Carneiro, 9-Feb-2015.)
Hypotheses
Ref Expression
dvcl.s  |-  ( ph  ->  S  C_  CC )
dvcl.f  |-  ( ph  ->  F : A --> CC )
dvcl.a  |-  ( ph  ->  A  C_  S )
Assertion
Ref Expression
dvbss  |-  ( ph  ->  dom  ( S  _D  F )  C_  A
)

Proof of Theorem dvbss
StepHypRef Expression
1 dvcl.s . . 3  |-  ( ph  ->  S  C_  CC )
2 dvcl.f . . 3  |-  ( ph  ->  F : A --> CC )
3 dvcl.a . . 3  |-  ( ph  ->  A  C_  S )
4 eqid 2206 . . 3  |-  ( (
MetOpen `  ( abs  o.  -  ) )t  S )  =  ( ( MetOpen `  ( abs  o.  -  )
)t 
S )
5 eqid 2206 . . 3  |-  ( MetOpen `  ( abs  o.  -  )
)  =  ( MetOpen `  ( abs  o.  -  )
)
61, 2, 3, 4, 5dvbssntrcntop 15241 . 2  |-  ( ph  ->  dom  ( S  _D  F )  C_  (
( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  S ) ) `  A ) )
75cntoptop 15090 . . . 4  |-  ( MetOpen `  ( abs  o.  -  )
)  e.  Top
8 cnex 8079 . . . . 5  |-  CC  e.  _V
9 ssexg 4194 . . . . 5  |-  ( ( S  C_  CC  /\  CC  e.  _V )  ->  S  e.  _V )
101, 8, 9sylancl 413 . . . 4  |-  ( ph  ->  S  e.  _V )
11 resttop 14727 . . . 4  |-  ( ( ( MetOpen `  ( abs  o. 
-  ) )  e. 
Top  /\  S  e.  _V )  ->  ( (
MetOpen `  ( abs  o.  -  ) )t  S )  e.  Top )
127, 10, 11sylancr 414 . . 3  |-  ( ph  ->  ( ( MetOpen `  ( abs  o.  -  ) )t  S )  e.  Top )
135cntoptopon 15089 . . . . . 6  |-  ( MetOpen `  ( abs  o.  -  )
)  e.  (TopOn `  CC )
14 resttopon 14728 . . . . . 6  |-  ( ( ( MetOpen `  ( abs  o. 
-  ) )  e.  (TopOn `  CC )  /\  S  C_  CC )  ->  ( ( MetOpen `  ( abs  o.  -  )
)t 
S )  e.  (TopOn `  S ) )
1513, 1, 14sylancr 414 . . . . 5  |-  ( ph  ->  ( ( MetOpen `  ( abs  o.  -  ) )t  S )  e.  (TopOn `  S ) )
16 toponuni 14572 . . . . 5  |-  ( ( ( MetOpen `  ( abs  o. 
-  ) )t  S )  e.  (TopOn `  S
)  ->  S  =  U. ( ( MetOpen `  ( abs  o.  -  ) )t  S ) )
1715, 16syl 14 . . . 4  |-  ( ph  ->  S  =  U. (
( MetOpen `  ( abs  o. 
-  ) )t  S ) )
183, 17sseqtrd 3235 . . 3  |-  ( ph  ->  A  C_  U. (
( MetOpen `  ( abs  o. 
-  ) )t  S ) )
19 eqid 2206 . . . 4  |-  U. (
( MetOpen `  ( abs  o. 
-  ) )t  S )  =  U. ( (
MetOpen `  ( abs  o.  -  ) )t  S )
2019ntrss2 14678 . . 3  |-  ( ( ( ( MetOpen `  ( abs  o.  -  ) )t  S )  e.  Top  /\  A  C_  U. ( (
MetOpen `  ( abs  o.  -  ) )t  S ) )  ->  ( ( int `  ( ( MetOpen `  ( abs  o.  -  )
)t 
S ) ) `  A )  C_  A
)
2112, 18, 20syl2anc 411 . 2  |-  ( ph  ->  ( ( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  S ) ) `  A ) 
C_  A )
226, 21sstrd 3207 1  |-  ( ph  ->  dom  ( S  _D  F )  C_  A
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2177   _Vcvv 2773    C_ wss 3170   U.cuni 3859   dom cdm 4688    o. ccom 4692   -->wf 5281   ` cfv 5285  (class class class)co 5962   CCcc 7953    - cmin 8273   abscabs 11393   ↾t crest 13156   MetOpencmopn 14388   Topctop 14554  TopOnctopon 14567   intcnt 14650    _D cdv 15212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4170  ax-sep 4173  ax-nul 4181  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-iinf 4649  ax-cnex 8046  ax-resscn 8047  ax-1cn 8048  ax-1re 8049  ax-icn 8050  ax-addcl 8051  ax-addrcl 8052  ax-mulcl 8053  ax-mulrcl 8054  ax-addcom 8055  ax-mulcom 8056  ax-addass 8057  ax-mulass 8058  ax-distr 8059  ax-i2m1 8060  ax-0lt1 8061  ax-1rid 8062  ax-0id 8063  ax-rnegex 8064  ax-precex 8065  ax-cnre 8066  ax-pre-ltirr 8067  ax-pre-ltwlin 8068  ax-pre-lttrn 8069  ax-pre-apti 8070  ax-pre-ltadd 8071  ax-pre-mulgt0 8072  ax-pre-mulext 8073  ax-arch 8074  ax-caucvg 8075
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-iun 3938  df-br 4055  df-opab 4117  df-mpt 4118  df-tr 4154  df-id 4353  df-po 4356  df-iso 4357  df-iord 4426  df-on 4428  df-ilim 4429  df-suc 4431  df-iom 4652  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-f1 5290  df-fo 5291  df-f1o 5292  df-fv 5293  df-isom 5294  df-riota 5917  df-ov 5965  df-oprab 5966  df-mpo 5967  df-1st 6244  df-2nd 6245  df-recs 6409  df-frec 6495  df-map 6755  df-pm 6756  df-sup 7107  df-inf 7108  df-pnf 8139  df-mnf 8140  df-xr 8141  df-ltxr 8142  df-le 8143  df-sub 8275  df-neg 8276  df-reap 8678  df-ap 8685  df-div 8776  df-inn 9067  df-2 9125  df-3 9126  df-4 9127  df-n0 9326  df-z 9403  df-uz 9679  df-q 9771  df-rp 9806  df-xneg 9924  df-xadd 9925  df-seqfrec 10625  df-exp 10716  df-cj 11238  df-re 11239  df-im 11240  df-rsqrt 11394  df-abs 11395  df-rest 13158  df-topgen 13177  df-psmet 14390  df-xmet 14391  df-met 14392  df-bl 14393  df-mopn 14394  df-top 14555  df-topon 14568  df-bases 14600  df-ntr 14653  df-limced 15213  df-dvap 15214
This theorem is referenced by:  dvbsssg  15243  dvidlemap  15248  dvidrelem  15249  dvidsslem  15250  dviaddf  15262  dvimulf  15263  dvcoapbr  15264  dvcjbr  15265  dvrecap  15270
  Copyright terms: Public domain W3C validator