![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elfzle2 | Unicode version |
Description: A member of a finite set of sequential integer is less than or equal to the upper bound. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
elfzle2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzuz3 10088 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | eluzle 9604 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl 14 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-fv 5262 df-ov 5921 df-oprab 5922 df-mpo 5923 df-neg 8193 df-z 9318 df-uz 9593 df-fz 10075 |
This theorem is referenced by: elfz1eq 10101 fzdisj 10118 fznatpl1 10142 fzp1disj 10146 uzdisj 10159 fzneuz 10167 fznuz 10168 elfzmlbm 10197 difelfznle 10201 nn0disj 10204 iseqf1olemqcl 10570 iseqf1olemnab 10572 iseqf1olemab 10573 iseqf1olemqk 10578 iseqf1olemfvp 10581 seq3f1olemqsumkj 10582 seq3f1olemqsumk 10583 seq3f1olemqsum 10584 seq3f1oleml 10587 seq3f1o 10588 seqf1oglem1 10590 seqf1oglem2 10591 seqfeq4g 10602 bcval4 10823 bcp1nk 10833 zfz1isolemiso 10910 seq3coll 10913 summodclem3 11523 summodclem2a 11524 fsum3 11530 fsumcl2lem 11541 fsum0diaglem 11583 mertenslemi1 11678 prodmodclem3 11718 prodmodclem2a 11719 fprodseq 11726 fzm1ndvds 11998 prmind2 12258 prmdvdsfz 12277 isprm5lem 12279 hashdvds 12359 eulerthlemrprm 12367 eulerthlema 12368 prmdiveq 12374 4sqlem11 12539 4sqlem12 12540 ennnfonelemim 12581 ctinfomlemom 12584 gsumfzfsumlemm 14075 wilthlem1 15112 lgsval2lem 15126 lgseisenlem1 15186 lgseisenlem2 15187 lgseisenlem3 15188 lgsquadlem1 15191 supfz 15561 |
Copyright terms: Public domain | W3C validator |