| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elfzle2 | Unicode version | ||
| Description: A member of a finite set of sequential integer is less than or equal to the upper bound. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| elfzle2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzuz3 10114 |
. 2
| |
| 2 | eluzle 9630 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-neg 8217 df-z 9344 df-uz 9619 df-fz 10101 |
| This theorem is referenced by: elfz1eq 10127 fzdisj 10144 fznatpl1 10168 fzp1disj 10172 uzdisj 10185 fzneuz 10193 fznuz 10194 elfzmlbm 10223 difelfznle 10227 nn0disj 10230 iseqf1olemqcl 10608 iseqf1olemnab 10610 iseqf1olemab 10611 iseqf1olemqk 10616 iseqf1olemfvp 10619 seq3f1olemqsumkj 10620 seq3f1olemqsumk 10621 seq3f1olemqsum 10622 seq3f1oleml 10625 seq3f1o 10626 seqf1oglem1 10628 seqf1oglem2 10629 seqfeq4g 10640 bcval4 10861 bcp1nk 10871 zfz1isolemiso 10948 seq3coll 10951 summodclem3 11562 summodclem2a 11563 fsum3 11569 fsumcl2lem 11580 fsum0diaglem 11622 mertenslemi1 11717 prodmodclem3 11757 prodmodclem2a 11758 fprodseq 11765 fzm1ndvds 12038 prmind2 12313 prmdvdsfz 12332 isprm5lem 12334 hashdvds 12414 eulerthlemrprm 12422 eulerthlema 12423 prmdiveq 12429 4sqlem11 12595 4sqlem12 12596 ennnfonelemim 12666 ctinfomlemom 12669 gsumfzfsumlemm 14219 wilthlem1 15300 lgsval2lem 15335 lgseisenlem1 15395 lgseisenlem2 15396 lgseisenlem3 15397 lgsquadlem1 15402 lgsquadlem2 15403 2lgslem1a 15413 supfz 15802 |
| Copyright terms: Public domain | W3C validator |