| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elfzle2 | Unicode version | ||
| Description: A member of a finite set of sequential integer is less than or equal to the upper bound. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| elfzle2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzuz3 10218 |
. 2
| |
| 2 | eluzle 9734 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fv 5326 df-ov 6004 df-oprab 6005 df-mpo 6006 df-neg 8320 df-z 9447 df-uz 9723 df-fz 10205 |
| This theorem is referenced by: elfz1eq 10231 fzdisj 10248 fznatpl1 10272 fzp1disj 10276 uzdisj 10289 fzneuz 10297 fznuz 10298 elfzmlbm 10327 difelfznle 10331 nn0disj 10334 iseqf1olemqcl 10721 iseqf1olemnab 10723 iseqf1olemab 10724 iseqf1olemqk 10729 iseqf1olemfvp 10732 seq3f1olemqsumkj 10733 seq3f1olemqsumk 10734 seq3f1olemqsum 10735 seq3f1oleml 10738 seq3f1o 10739 seqf1oglem1 10741 seqf1oglem2 10742 seqfeq4g 10753 bcval4 10974 bcp1nk 10984 zfz1isolemiso 11061 seq3coll 11064 summodclem3 11891 summodclem2a 11892 fsum3 11898 fsumcl2lem 11909 fsum0diaglem 11951 mertenslemi1 12046 prodmodclem3 12086 prodmodclem2a 12087 fprodseq 12094 fzm1ndvds 12367 prmind2 12642 prmdvdsfz 12661 isprm5lem 12663 hashdvds 12743 eulerthlemrprm 12751 eulerthlema 12752 prmdiveq 12758 4sqlem11 12924 4sqlem12 12925 ennnfonelemim 12995 ctinfomlemom 12998 gsumfzfsumlemm 14551 wilthlem1 15654 lgsval2lem 15689 lgseisenlem1 15749 lgseisenlem2 15750 lgseisenlem3 15751 lgsquadlem1 15756 lgsquadlem2 15757 2lgslem1a 15767 supfz 16439 |
| Copyright terms: Public domain | W3C validator |