Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elfzle2 | Unicode version |
Description: A member of a finite set of sequential integer is less than or equal to the upper bound. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
elfzle2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzuz3 9957 | . 2 | |
2 | eluzle 9478 | . 2 | |
3 | 1, 2 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2136 class class class wbr 3982 cfv 5188 (class class class)co 5842 cle 7934 cuz 9466 cfz 9944 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-neg 8072 df-z 9192 df-uz 9467 df-fz 9945 |
This theorem is referenced by: elfz1eq 9970 fzdisj 9987 fznatpl1 10011 fzp1disj 10015 uzdisj 10028 fzneuz 10036 fznuz 10037 elfzmlbm 10066 difelfznle 10070 nn0disj 10073 iseqf1olemqcl 10421 iseqf1olemnab 10423 iseqf1olemab 10424 iseqf1olemqk 10429 iseqf1olemfvp 10432 seq3f1olemqsumkj 10433 seq3f1olemqsumk 10434 seq3f1olemqsum 10435 seq3f1oleml 10438 seq3f1o 10439 bcval4 10665 bcp1nk 10675 zfz1isolemiso 10752 seq3coll 10755 summodclem3 11321 summodclem2a 11322 fsum3 11328 fsumcl2lem 11339 fsum0diaglem 11381 mertenslemi1 11476 prodmodclem3 11516 prodmodclem2a 11517 fprodseq 11524 fzm1ndvds 11794 prmind2 12052 prmdvdsfz 12071 isprm5lem 12073 hashdvds 12153 eulerthlemrprm 12161 eulerthlema 12162 prmdiveq 12168 ennnfonelemim 12357 ctinfomlemom 12360 lgsval2lem 13551 supfz 13947 |
Copyright terms: Public domain | W3C validator |