Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elfzle2 | Unicode version |
Description: A member of a finite set of sequential integer is less than or equal to the upper bound. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
elfzle2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzuz3 9992 | . 2 | |
2 | eluzle 9513 | . 2 | |
3 | 1, 2 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2146 class class class wbr 3998 cfv 5208 (class class class)co 5865 cle 7967 cuz 9501 cfz 9979 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-setind 4530 ax-cnex 7877 ax-resscn 7878 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-ral 2458 df-rex 2459 df-rab 2462 df-v 2737 df-sbc 2961 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-fv 5216 df-ov 5868 df-oprab 5869 df-mpo 5870 df-neg 8105 df-z 9227 df-uz 9502 df-fz 9980 |
This theorem is referenced by: elfz1eq 10005 fzdisj 10022 fznatpl1 10046 fzp1disj 10050 uzdisj 10063 fzneuz 10071 fznuz 10072 elfzmlbm 10101 difelfznle 10105 nn0disj 10108 iseqf1olemqcl 10456 iseqf1olemnab 10458 iseqf1olemab 10459 iseqf1olemqk 10464 iseqf1olemfvp 10467 seq3f1olemqsumkj 10468 seq3f1olemqsumk 10469 seq3f1olemqsum 10470 seq3f1oleml 10473 seq3f1o 10474 bcval4 10700 bcp1nk 10710 zfz1isolemiso 10787 seq3coll 10790 summodclem3 11356 summodclem2a 11357 fsum3 11363 fsumcl2lem 11374 fsum0diaglem 11416 mertenslemi1 11511 prodmodclem3 11551 prodmodclem2a 11552 fprodseq 11559 fzm1ndvds 11829 prmind2 12087 prmdvdsfz 12106 isprm5lem 12108 hashdvds 12188 eulerthlemrprm 12196 eulerthlema 12197 prmdiveq 12203 ennnfonelemim 12392 ctinfomlemom 12395 lgsval2lem 13982 supfz 14377 |
Copyright terms: Public domain | W3C validator |