| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elfzle2 | Unicode version | ||
| Description: A member of a finite set of sequential integer is less than or equal to the upper bound. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| elfzle2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzuz3 10179 |
. 2
| |
| 2 | eluzle 9695 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-neg 8281 df-z 9408 df-uz 9684 df-fz 10166 |
| This theorem is referenced by: elfz1eq 10192 fzdisj 10209 fznatpl1 10233 fzp1disj 10237 uzdisj 10250 fzneuz 10258 fznuz 10259 elfzmlbm 10288 difelfznle 10292 nn0disj 10295 iseqf1olemqcl 10681 iseqf1olemnab 10683 iseqf1olemab 10684 iseqf1olemqk 10689 iseqf1olemfvp 10692 seq3f1olemqsumkj 10693 seq3f1olemqsumk 10694 seq3f1olemqsum 10695 seq3f1oleml 10698 seq3f1o 10699 seqf1oglem1 10701 seqf1oglem2 10702 seqfeq4g 10713 bcval4 10934 bcp1nk 10944 zfz1isolemiso 11021 seq3coll 11024 summodclem3 11806 summodclem2a 11807 fsum3 11813 fsumcl2lem 11824 fsum0diaglem 11866 mertenslemi1 11961 prodmodclem3 12001 prodmodclem2a 12002 fprodseq 12009 fzm1ndvds 12282 prmind2 12557 prmdvdsfz 12576 isprm5lem 12578 hashdvds 12658 eulerthlemrprm 12666 eulerthlema 12667 prmdiveq 12673 4sqlem11 12839 4sqlem12 12840 ennnfonelemim 12910 ctinfomlemom 12913 gsumfzfsumlemm 14464 wilthlem1 15567 lgsval2lem 15602 lgseisenlem1 15662 lgseisenlem2 15663 lgseisenlem3 15664 lgsquadlem1 15669 lgsquadlem2 15670 2lgslem1a 15680 supfz 16212 |
| Copyright terms: Public domain | W3C validator |