![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elfzle2 | Unicode version |
Description: A member of a finite set of sequential integer is less than or equal to the upper bound. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
elfzle2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzuz3 10035 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | eluzle 9553 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl 14 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-14 2161 ax-ext 2169 ax-sep 4133 ax-pow 4186 ax-pr 4221 ax-setind 4548 ax-cnex 7915 ax-resscn 7916 |
This theorem depends on definitions: df-bi 117 df-3or 980 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ne 2358 df-ral 2470 df-rex 2471 df-rab 2474 df-v 2751 df-sbc 2975 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-br 4016 df-opab 4077 df-mpt 4078 df-id 4305 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-rn 4649 df-res 4650 df-ima 4651 df-iota 5190 df-fun 5230 df-fn 5231 df-f 5232 df-fv 5236 df-ov 5891 df-oprab 5892 df-mpo 5893 df-neg 8144 df-z 9267 df-uz 9542 df-fz 10022 |
This theorem is referenced by: elfz1eq 10048 fzdisj 10065 fznatpl1 10089 fzp1disj 10093 uzdisj 10106 fzneuz 10114 fznuz 10115 elfzmlbm 10144 difelfznle 10148 nn0disj 10151 iseqf1olemqcl 10499 iseqf1olemnab 10501 iseqf1olemab 10502 iseqf1olemqk 10507 iseqf1olemfvp 10510 seq3f1olemqsumkj 10511 seq3f1olemqsumk 10512 seq3f1olemqsum 10513 seq3f1oleml 10516 seq3f1o 10517 bcval4 10745 bcp1nk 10755 zfz1isolemiso 10832 seq3coll 10835 summodclem3 11401 summodclem2a 11402 fsum3 11408 fsumcl2lem 11419 fsum0diaglem 11461 mertenslemi1 11556 prodmodclem3 11596 prodmodclem2a 11597 fprodseq 11604 fzm1ndvds 11875 prmind2 12133 prmdvdsfz 12152 isprm5lem 12154 hashdvds 12234 eulerthlemrprm 12242 eulerthlema 12243 prmdiveq 12249 ennnfonelemim 12438 ctinfomlemom 12441 lgsval2lem 14638 lgseisenlem1 14677 lgseisenlem2 14678 supfz 15047 |
Copyright terms: Public domain | W3C validator |