ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfzle2 Unicode version

Theorem elfzle2 10094
Description: A member of a finite set of sequential integer is less than or equal to the upper bound. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
elfzle2  |-  ( K  e.  ( M ... N )  ->  K  <_  N )

Proof of Theorem elfzle2
StepHypRef Expression
1 elfzuz3 10088 . 2  |-  ( K  e.  ( M ... N )  ->  N  e.  ( ZZ>= `  K )
)
2 eluzle 9604 . 2  |-  ( N  e.  ( ZZ>= `  K
)  ->  K  <_  N )
31, 2syl 14 1  |-  ( K  e.  ( M ... N )  ->  K  <_  N )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2164   class class class wbr 4029   ` cfv 5254  (class class class)co 5918    <_ cle 8055   ZZ>=cuz 9592   ...cfz 10074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-setind 4569  ax-cnex 7963  ax-resscn 7964
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-neg 8193  df-z 9318  df-uz 9593  df-fz 10075
This theorem is referenced by:  elfz1eq  10101  fzdisj  10118  fznatpl1  10142  fzp1disj  10146  uzdisj  10159  fzneuz  10167  fznuz  10168  elfzmlbm  10197  difelfznle  10201  nn0disj  10204  iseqf1olemqcl  10570  iseqf1olemnab  10572  iseqf1olemab  10573  iseqf1olemqk  10578  iseqf1olemfvp  10581  seq3f1olemqsumkj  10582  seq3f1olemqsumk  10583  seq3f1olemqsum  10584  seq3f1oleml  10587  seq3f1o  10588  seqf1oglem1  10590  seqf1oglem2  10591  seqfeq4g  10602  bcval4  10823  bcp1nk  10833  zfz1isolemiso  10910  seq3coll  10913  summodclem3  11523  summodclem2a  11524  fsum3  11530  fsumcl2lem  11541  fsum0diaglem  11583  mertenslemi1  11678  prodmodclem3  11718  prodmodclem2a  11719  fprodseq  11726  fzm1ndvds  11998  prmind2  12258  prmdvdsfz  12277  isprm5lem  12279  hashdvds  12359  eulerthlemrprm  12367  eulerthlema  12368  prmdiveq  12374  4sqlem11  12539  4sqlem12  12540  ennnfonelemim  12581  ctinfomlemom  12584  gsumfzfsumlemm  14075  wilthlem1  15112  lgsval2lem  15126  lgseisenlem1  15186  lgseisenlem2  15187  lgseisenlem3  15188  lgsquadlem1  15191  supfz  15561
  Copyright terms: Public domain W3C validator