| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elfzle2 | Unicode version | ||
| Description: A member of a finite set of sequential integer is less than or equal to the upper bound. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| elfzle2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzuz3 10146 |
. 2
| |
| 2 | eluzle 9662 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-setind 4586 ax-cnex 8018 ax-resscn 8019 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-opab 4107 df-mpt 4108 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-fv 5280 df-ov 5949 df-oprab 5950 df-mpo 5951 df-neg 8248 df-z 9375 df-uz 9651 df-fz 10133 |
| This theorem is referenced by: elfz1eq 10159 fzdisj 10176 fznatpl1 10200 fzp1disj 10204 uzdisj 10217 fzneuz 10225 fznuz 10226 elfzmlbm 10255 difelfznle 10259 nn0disj 10262 iseqf1olemqcl 10646 iseqf1olemnab 10648 iseqf1olemab 10649 iseqf1olemqk 10654 iseqf1olemfvp 10657 seq3f1olemqsumkj 10658 seq3f1olemqsumk 10659 seq3f1olemqsum 10660 seq3f1oleml 10663 seq3f1o 10664 seqf1oglem1 10666 seqf1oglem2 10667 seqfeq4g 10678 bcval4 10899 bcp1nk 10909 zfz1isolemiso 10986 seq3coll 10989 summodclem3 11724 summodclem2a 11725 fsum3 11731 fsumcl2lem 11742 fsum0diaglem 11784 mertenslemi1 11879 prodmodclem3 11919 prodmodclem2a 11920 fprodseq 11927 fzm1ndvds 12200 prmind2 12475 prmdvdsfz 12494 isprm5lem 12496 hashdvds 12576 eulerthlemrprm 12584 eulerthlema 12585 prmdiveq 12591 4sqlem11 12757 4sqlem12 12758 ennnfonelemim 12828 ctinfomlemom 12831 gsumfzfsumlemm 14382 wilthlem1 15485 lgsval2lem 15520 lgseisenlem1 15580 lgseisenlem2 15581 lgseisenlem3 15582 lgsquadlem1 15587 lgsquadlem2 15588 2lgslem1a 15598 supfz 16047 |
| Copyright terms: Public domain | W3C validator |