ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suprleubex GIF version

Theorem suprleubex 9062
Description: The supremum of a nonempty bounded set of reals is less than or equal to an upper bound. (Contributed by NM, 18-Mar-2005.) (Revised by Mario Carneiro, 6-Sep-2014.)
Hypotheses
Ref Expression
suprubex.ex (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
suprubex.ss (𝜑𝐴 ⊆ ℝ)
suprlubex.b (𝜑𝐵 ∈ ℝ)
Assertion
Ref Expression
suprleubex (𝜑 → (sup(𝐴, ℝ, < ) ≤ 𝐵 ↔ ∀𝑧𝐴 𝑧𝐵))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝜑,𝑥   𝑧,𝐵
Allowed substitution hints:   𝜑(𝑦,𝑧)   𝐵(𝑥,𝑦)

Proof of Theorem suprleubex
Dummy variables 𝑓 𝑔 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lttri3 8187 . . . . . . . 8 ((𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓)))
21adantl 277 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ)) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓)))
3 suprubex.ex . . . . . . 7 (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
42, 3supclti 7126 . . . . . 6 (𝜑 → sup(𝐴, ℝ, < ) ∈ ℝ)
5 suprlubex.b . . . . . 6 (𝜑𝐵 ∈ ℝ)
64, 5lenltd 8225 . . . . 5 (𝜑 → (sup(𝐴, ℝ, < ) ≤ 𝐵 ↔ ¬ 𝐵 < sup(𝐴, ℝ, < )))
7 suprubex.ss . . . . . 6 (𝜑𝐴 ⊆ ℝ)
83, 7, 5suprnubex 9061 . . . . 5 (𝜑 → (¬ 𝐵 < sup(𝐴, ℝ, < ) ↔ ∀𝑧𝐴 ¬ 𝐵 < 𝑧))
96, 8bitrd 188 . . . 4 (𝜑 → (sup(𝐴, ℝ, < ) ≤ 𝐵 ↔ ∀𝑧𝐴 ¬ 𝐵 < 𝑧))
10 breq2 4063 . . . . . 6 (𝑤 = 𝑧 → (𝐵 < 𝑤𝐵 < 𝑧))
1110notbid 669 . . . . 5 (𝑤 = 𝑧 → (¬ 𝐵 < 𝑤 ↔ ¬ 𝐵 < 𝑧))
1211cbvralv 2742 . . . 4 (∀𝑤𝐴 ¬ 𝐵 < 𝑤 ↔ ∀𝑧𝐴 ¬ 𝐵 < 𝑧)
139, 12bitr4di 198 . . 3 (𝜑 → (sup(𝐴, ℝ, < ) ≤ 𝐵 ↔ ∀𝑤𝐴 ¬ 𝐵 < 𝑤))
147sselda 3201 . . . . 5 ((𝜑𝑤𝐴) → 𝑤 ∈ ℝ)
155adantr 276 . . . . 5 ((𝜑𝑤𝐴) → 𝐵 ∈ ℝ)
1614, 15lenltd 8225 . . . 4 ((𝜑𝑤𝐴) → (𝑤𝐵 ↔ ¬ 𝐵 < 𝑤))
1716ralbidva 2504 . . 3 (𝜑 → (∀𝑤𝐴 𝑤𝐵 ↔ ∀𝑤𝐴 ¬ 𝐵 < 𝑤))
1813, 17bitr4d 191 . 2 (𝜑 → (sup(𝐴, ℝ, < ) ≤ 𝐵 ↔ ∀𝑤𝐴 𝑤𝐵))
19 breq1 4062 . . 3 (𝑤 = 𝑧 → (𝑤𝐵𝑧𝐵))
2019cbvralv 2742 . 2 (∀𝑤𝐴 𝑤𝐵 ↔ ∀𝑧𝐴 𝑧𝐵)
2118, 20bitrdi 196 1 (𝜑 → (sup(𝐴, ℝ, < ) ≤ 𝐵 ↔ ∀𝑧𝐴 𝑧𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wcel 2178  wral 2486  wrex 2487  wss 3174   class class class wbr 4059  supcsup 7110  cr 7959   < clt 8142  cle 8143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-po 4361  df-iso 4362  df-xp 4699  df-cnv 4701  df-iota 5251  df-riota 5922  df-sup 7112  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148
This theorem is referenced by:  suprzclex  9506  suplociccex  15212
  Copyright terms: Public domain W3C validator