ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suprleubex GIF version

Theorem suprleubex 8736
Description: The supremum of a nonempty bounded set of reals is less than or equal to an upper bound. (Contributed by NM, 18-Mar-2005.) (Revised by Mario Carneiro, 6-Sep-2014.)
Hypotheses
Ref Expression
suprubex.ex (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
suprubex.ss (𝜑𝐴 ⊆ ℝ)
suprlubex.b (𝜑𝐵 ∈ ℝ)
Assertion
Ref Expression
suprleubex (𝜑 → (sup(𝐴, ℝ, < ) ≤ 𝐵 ↔ ∀𝑧𝐴 𝑧𝐵))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝜑,𝑥   𝑧,𝐵
Allowed substitution hints:   𝜑(𝑦,𝑧)   𝐵(𝑥,𝑦)

Proof of Theorem suprleubex
Dummy variables 𝑓 𝑔 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lttri3 7868 . . . . . . . 8 ((𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓)))
21adantl 275 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ)) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓)))
3 suprubex.ex . . . . . . 7 (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
42, 3supclti 6893 . . . . . 6 (𝜑 → sup(𝐴, ℝ, < ) ∈ ℝ)
5 suprlubex.b . . . . . 6 (𝜑𝐵 ∈ ℝ)
64, 5lenltd 7904 . . . . 5 (𝜑 → (sup(𝐴, ℝ, < ) ≤ 𝐵 ↔ ¬ 𝐵 < sup(𝐴, ℝ, < )))
7 suprubex.ss . . . . . 6 (𝜑𝐴 ⊆ ℝ)
83, 7, 5suprnubex 8735 . . . . 5 (𝜑 → (¬ 𝐵 < sup(𝐴, ℝ, < ) ↔ ∀𝑧𝐴 ¬ 𝐵 < 𝑧))
96, 8bitrd 187 . . . 4 (𝜑 → (sup(𝐴, ℝ, < ) ≤ 𝐵 ↔ ∀𝑧𝐴 ¬ 𝐵 < 𝑧))
10 breq2 3941 . . . . . 6 (𝑤 = 𝑧 → (𝐵 < 𝑤𝐵 < 𝑧))
1110notbid 657 . . . . 5 (𝑤 = 𝑧 → (¬ 𝐵 < 𝑤 ↔ ¬ 𝐵 < 𝑧))
1211cbvralv 2657 . . . 4 (∀𝑤𝐴 ¬ 𝐵 < 𝑤 ↔ ∀𝑧𝐴 ¬ 𝐵 < 𝑧)
139, 12syl6bbr 197 . . 3 (𝜑 → (sup(𝐴, ℝ, < ) ≤ 𝐵 ↔ ∀𝑤𝐴 ¬ 𝐵 < 𝑤))
147sselda 3102 . . . . 5 ((𝜑𝑤𝐴) → 𝑤 ∈ ℝ)
155adantr 274 . . . . 5 ((𝜑𝑤𝐴) → 𝐵 ∈ ℝ)
1614, 15lenltd 7904 . . . 4 ((𝜑𝑤𝐴) → (𝑤𝐵 ↔ ¬ 𝐵 < 𝑤))
1716ralbidva 2434 . . 3 (𝜑 → (∀𝑤𝐴 𝑤𝐵 ↔ ∀𝑤𝐴 ¬ 𝐵 < 𝑤))
1813, 17bitr4d 190 . 2 (𝜑 → (sup(𝐴, ℝ, < ) ≤ 𝐵 ↔ ∀𝑤𝐴 𝑤𝐵))
19 breq1 3940 . . 3 (𝑤 = 𝑧 → (𝑤𝐵𝑧𝐵))
2019cbvralv 2657 . 2 (∀𝑤𝐴 𝑤𝐵 ↔ ∀𝑧𝐴 𝑧𝐵)
2118, 20syl6bb 195 1 (𝜑 → (sup(𝐴, ℝ, < ) ≤ 𝐵 ↔ ∀𝑧𝐴 𝑧𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wcel 1481  wral 2417  wrex 2418  wss 3076   class class class wbr 3937  supcsup 6877  cr 7643   < clt 7824  cle 7825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-po 4226  df-iso 4227  df-xp 4553  df-cnv 4555  df-iota 5096  df-riota 5738  df-sup 6879  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830
This theorem is referenced by:  suprzclex  9173  suplociccex  12811
  Copyright terms: Public domain W3C validator