Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > suprleubex | GIF version |
Description: The supremum of a nonempty bounded set of reals is less than or equal to an upper bound. (Contributed by NM, 18-Mar-2005.) (Revised by Mario Carneiro, 6-Sep-2014.) |
Ref | Expression |
---|---|
suprubex.ex | ⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) |
suprubex.ss | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
suprlubex.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
Ref | Expression |
---|---|
suprleubex | ⊢ (𝜑 → (sup(𝐴, ℝ, < ) ≤ 𝐵 ↔ ∀𝑧 ∈ 𝐴 𝑧 ≤ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lttri3 7970 | . . . . . . . 8 ⊢ ((𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓))) | |
2 | 1 | adantl 275 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ)) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓))) |
3 | suprubex.ex | . . . . . . 7 ⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) | |
4 | 2, 3 | supclti 6955 | . . . . . 6 ⊢ (𝜑 → sup(𝐴, ℝ, < ) ∈ ℝ) |
5 | suprlubex.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
6 | 4, 5 | lenltd 8008 | . . . . 5 ⊢ (𝜑 → (sup(𝐴, ℝ, < ) ≤ 𝐵 ↔ ¬ 𝐵 < sup(𝐴, ℝ, < ))) |
7 | suprubex.ss | . . . . . 6 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
8 | 3, 7, 5 | suprnubex 8840 | . . . . 5 ⊢ (𝜑 → (¬ 𝐵 < sup(𝐴, ℝ, < ) ↔ ∀𝑧 ∈ 𝐴 ¬ 𝐵 < 𝑧)) |
9 | 6, 8 | bitrd 187 | . . . 4 ⊢ (𝜑 → (sup(𝐴, ℝ, < ) ≤ 𝐵 ↔ ∀𝑧 ∈ 𝐴 ¬ 𝐵 < 𝑧)) |
10 | breq2 3981 | . . . . . 6 ⊢ (𝑤 = 𝑧 → (𝐵 < 𝑤 ↔ 𝐵 < 𝑧)) | |
11 | 10 | notbid 657 | . . . . 5 ⊢ (𝑤 = 𝑧 → (¬ 𝐵 < 𝑤 ↔ ¬ 𝐵 < 𝑧)) |
12 | 11 | cbvralv 2690 | . . . 4 ⊢ (∀𝑤 ∈ 𝐴 ¬ 𝐵 < 𝑤 ↔ ∀𝑧 ∈ 𝐴 ¬ 𝐵 < 𝑧) |
13 | 9, 12 | bitr4di 197 | . . 3 ⊢ (𝜑 → (sup(𝐴, ℝ, < ) ≤ 𝐵 ↔ ∀𝑤 ∈ 𝐴 ¬ 𝐵 < 𝑤)) |
14 | 7 | sselda 3138 | . . . . 5 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → 𝑤 ∈ ℝ) |
15 | 5 | adantr 274 | . . . . 5 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → 𝐵 ∈ ℝ) |
16 | 14, 15 | lenltd 8008 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝑤 ≤ 𝐵 ↔ ¬ 𝐵 < 𝑤)) |
17 | 16 | ralbidva 2460 | . . 3 ⊢ (𝜑 → (∀𝑤 ∈ 𝐴 𝑤 ≤ 𝐵 ↔ ∀𝑤 ∈ 𝐴 ¬ 𝐵 < 𝑤)) |
18 | 13, 17 | bitr4d 190 | . 2 ⊢ (𝜑 → (sup(𝐴, ℝ, < ) ≤ 𝐵 ↔ ∀𝑤 ∈ 𝐴 𝑤 ≤ 𝐵)) |
19 | breq1 3980 | . . 3 ⊢ (𝑤 = 𝑧 → (𝑤 ≤ 𝐵 ↔ 𝑧 ≤ 𝐵)) | |
20 | 19 | cbvralv 2690 | . 2 ⊢ (∀𝑤 ∈ 𝐴 𝑤 ≤ 𝐵 ↔ ∀𝑧 ∈ 𝐴 𝑧 ≤ 𝐵) |
21 | 18, 20 | bitrdi 195 | 1 ⊢ (𝜑 → (sup(𝐴, ℝ, < ) ≤ 𝐵 ↔ ∀𝑧 ∈ 𝐴 𝑧 ≤ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 ∈ wcel 2135 ∀wral 2442 ∃wrex 2443 ⊆ wss 3112 class class class wbr 3977 supcsup 6939 ℝcr 7744 < clt 7925 ≤ cle 7926 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1434 ax-7 1435 ax-gen 1436 ax-ie1 1480 ax-ie2 1481 ax-8 1491 ax-10 1492 ax-11 1493 ax-i12 1494 ax-bndl 1496 ax-4 1497 ax-17 1513 ax-i9 1517 ax-ial 1521 ax-i5r 1522 ax-13 2137 ax-14 2138 ax-ext 2146 ax-sep 4095 ax-pow 4148 ax-pr 4182 ax-un 4406 ax-setind 4509 ax-cnex 7836 ax-resscn 7837 ax-pre-ltirr 7857 ax-pre-ltwlin 7858 ax-pre-lttrn 7859 ax-pre-apti 7860 |
This theorem depends on definitions: df-bi 116 df-3an 969 df-tru 1345 df-fal 1348 df-nf 1448 df-sb 1750 df-eu 2016 df-mo 2017 df-clab 2151 df-cleq 2157 df-clel 2160 df-nfc 2295 df-ne 2335 df-nel 2430 df-ral 2447 df-rex 2448 df-reu 2449 df-rmo 2450 df-rab 2451 df-v 2724 df-sbc 2948 df-dif 3114 df-un 3116 df-in 3118 df-ss 3125 df-pw 3556 df-sn 3577 df-pr 3578 df-op 3580 df-uni 3785 df-br 3978 df-opab 4039 df-po 4269 df-iso 4270 df-xp 4605 df-cnv 4607 df-iota 5148 df-riota 5793 df-sup 6941 df-pnf 7927 df-mnf 7928 df-xr 7929 df-ltxr 7930 df-le 7931 |
This theorem is referenced by: suprzclex 9281 suplociccex 13170 |
Copyright terms: Public domain | W3C validator |