| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > suprleubex | GIF version | ||
| Description: The supremum of a nonempty bounded set of reals is less than or equal to an upper bound. (Contributed by NM, 18-Mar-2005.) (Revised by Mario Carneiro, 6-Sep-2014.) |
| Ref | Expression |
|---|---|
| suprubex.ex | ⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) |
| suprubex.ss | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
| suprlubex.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| Ref | Expression |
|---|---|
| suprleubex | ⊢ (𝜑 → (sup(𝐴, ℝ, < ) ≤ 𝐵 ↔ ∀𝑧 ∈ 𝐴 𝑧 ≤ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lttri3 8106 | . . . . . . . 8 ⊢ ((𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓))) | |
| 2 | 1 | adantl 277 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ)) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓))) |
| 3 | suprubex.ex | . . . . . . 7 ⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) | |
| 4 | 2, 3 | supclti 7064 | . . . . . 6 ⊢ (𝜑 → sup(𝐴, ℝ, < ) ∈ ℝ) |
| 5 | suprlubex.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 6 | 4, 5 | lenltd 8144 | . . . . 5 ⊢ (𝜑 → (sup(𝐴, ℝ, < ) ≤ 𝐵 ↔ ¬ 𝐵 < sup(𝐴, ℝ, < ))) |
| 7 | suprubex.ss | . . . . . 6 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
| 8 | 3, 7, 5 | suprnubex 8980 | . . . . 5 ⊢ (𝜑 → (¬ 𝐵 < sup(𝐴, ℝ, < ) ↔ ∀𝑧 ∈ 𝐴 ¬ 𝐵 < 𝑧)) |
| 9 | 6, 8 | bitrd 188 | . . . 4 ⊢ (𝜑 → (sup(𝐴, ℝ, < ) ≤ 𝐵 ↔ ∀𝑧 ∈ 𝐴 ¬ 𝐵 < 𝑧)) |
| 10 | breq2 4037 | . . . . . 6 ⊢ (𝑤 = 𝑧 → (𝐵 < 𝑤 ↔ 𝐵 < 𝑧)) | |
| 11 | 10 | notbid 668 | . . . . 5 ⊢ (𝑤 = 𝑧 → (¬ 𝐵 < 𝑤 ↔ ¬ 𝐵 < 𝑧)) |
| 12 | 11 | cbvralv 2729 | . . . 4 ⊢ (∀𝑤 ∈ 𝐴 ¬ 𝐵 < 𝑤 ↔ ∀𝑧 ∈ 𝐴 ¬ 𝐵 < 𝑧) |
| 13 | 9, 12 | bitr4di 198 | . . 3 ⊢ (𝜑 → (sup(𝐴, ℝ, < ) ≤ 𝐵 ↔ ∀𝑤 ∈ 𝐴 ¬ 𝐵 < 𝑤)) |
| 14 | 7 | sselda 3183 | . . . . 5 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → 𝑤 ∈ ℝ) |
| 15 | 5 | adantr 276 | . . . . 5 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → 𝐵 ∈ ℝ) |
| 16 | 14, 15 | lenltd 8144 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝑤 ≤ 𝐵 ↔ ¬ 𝐵 < 𝑤)) |
| 17 | 16 | ralbidva 2493 | . . 3 ⊢ (𝜑 → (∀𝑤 ∈ 𝐴 𝑤 ≤ 𝐵 ↔ ∀𝑤 ∈ 𝐴 ¬ 𝐵 < 𝑤)) |
| 18 | 13, 17 | bitr4d 191 | . 2 ⊢ (𝜑 → (sup(𝐴, ℝ, < ) ≤ 𝐵 ↔ ∀𝑤 ∈ 𝐴 𝑤 ≤ 𝐵)) |
| 19 | breq1 4036 | . . 3 ⊢ (𝑤 = 𝑧 → (𝑤 ≤ 𝐵 ↔ 𝑧 ≤ 𝐵)) | |
| 20 | 19 | cbvralv 2729 | . 2 ⊢ (∀𝑤 ∈ 𝐴 𝑤 ≤ 𝐵 ↔ ∀𝑧 ∈ 𝐴 𝑧 ≤ 𝐵) |
| 21 | 18, 20 | bitrdi 196 | 1 ⊢ (𝜑 → (sup(𝐴, ℝ, < ) ≤ 𝐵 ↔ ∀𝑧 ∈ 𝐴 𝑧 ≤ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2167 ∀wral 2475 ∃wrex 2476 ⊆ wss 3157 class class class wbr 4033 supcsup 7048 ℝcr 7878 < clt 8061 ≤ cle 8062 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-po 4331 df-iso 4332 df-xp 4669 df-cnv 4671 df-iota 5219 df-riota 5877 df-sup 7050 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 |
| This theorem is referenced by: suprzclex 9424 suplociccex 14861 |
| Copyright terms: Public domain | W3C validator |