![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > suprleubex | GIF version |
Description: The supremum of a nonempty bounded set of reals is less than or equal to an upper bound. (Contributed by NM, 18-Mar-2005.) (Revised by Mario Carneiro, 6-Sep-2014.) |
Ref | Expression |
---|---|
suprubex.ex | ⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) |
suprubex.ss | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
suprlubex.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
Ref | Expression |
---|---|
suprleubex | ⊢ (𝜑 → (sup(𝐴, ℝ, < ) ≤ 𝐵 ↔ ∀𝑧 ∈ 𝐴 𝑧 ≤ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lttri3 8062 | . . . . . . . 8 ⊢ ((𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓))) | |
2 | 1 | adantl 277 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ)) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓))) |
3 | suprubex.ex | . . . . . . 7 ⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) | |
4 | 2, 3 | supclti 7022 | . . . . . 6 ⊢ (𝜑 → sup(𝐴, ℝ, < ) ∈ ℝ) |
5 | suprlubex.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
6 | 4, 5 | lenltd 8100 | . . . . 5 ⊢ (𝜑 → (sup(𝐴, ℝ, < ) ≤ 𝐵 ↔ ¬ 𝐵 < sup(𝐴, ℝ, < ))) |
7 | suprubex.ss | . . . . . 6 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
8 | 3, 7, 5 | suprnubex 8935 | . . . . 5 ⊢ (𝜑 → (¬ 𝐵 < sup(𝐴, ℝ, < ) ↔ ∀𝑧 ∈ 𝐴 ¬ 𝐵 < 𝑧)) |
9 | 6, 8 | bitrd 188 | . . . 4 ⊢ (𝜑 → (sup(𝐴, ℝ, < ) ≤ 𝐵 ↔ ∀𝑧 ∈ 𝐴 ¬ 𝐵 < 𝑧)) |
10 | breq2 4022 | . . . . . 6 ⊢ (𝑤 = 𝑧 → (𝐵 < 𝑤 ↔ 𝐵 < 𝑧)) | |
11 | 10 | notbid 668 | . . . . 5 ⊢ (𝑤 = 𝑧 → (¬ 𝐵 < 𝑤 ↔ ¬ 𝐵 < 𝑧)) |
12 | 11 | cbvralv 2718 | . . . 4 ⊢ (∀𝑤 ∈ 𝐴 ¬ 𝐵 < 𝑤 ↔ ∀𝑧 ∈ 𝐴 ¬ 𝐵 < 𝑧) |
13 | 9, 12 | bitr4di 198 | . . 3 ⊢ (𝜑 → (sup(𝐴, ℝ, < ) ≤ 𝐵 ↔ ∀𝑤 ∈ 𝐴 ¬ 𝐵 < 𝑤)) |
14 | 7 | sselda 3170 | . . . . 5 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → 𝑤 ∈ ℝ) |
15 | 5 | adantr 276 | . . . . 5 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → 𝐵 ∈ ℝ) |
16 | 14, 15 | lenltd 8100 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝑤 ≤ 𝐵 ↔ ¬ 𝐵 < 𝑤)) |
17 | 16 | ralbidva 2486 | . . 3 ⊢ (𝜑 → (∀𝑤 ∈ 𝐴 𝑤 ≤ 𝐵 ↔ ∀𝑤 ∈ 𝐴 ¬ 𝐵 < 𝑤)) |
18 | 13, 17 | bitr4d 191 | . 2 ⊢ (𝜑 → (sup(𝐴, ℝ, < ) ≤ 𝐵 ↔ ∀𝑤 ∈ 𝐴 𝑤 ≤ 𝐵)) |
19 | breq1 4021 | . . 3 ⊢ (𝑤 = 𝑧 → (𝑤 ≤ 𝐵 ↔ 𝑧 ≤ 𝐵)) | |
20 | 19 | cbvralv 2718 | . 2 ⊢ (∀𝑤 ∈ 𝐴 𝑤 ≤ 𝐵 ↔ ∀𝑧 ∈ 𝐴 𝑧 ≤ 𝐵) |
21 | 18, 20 | bitrdi 196 | 1 ⊢ (𝜑 → (sup(𝐴, ℝ, < ) ≤ 𝐵 ↔ ∀𝑧 ∈ 𝐴 𝑧 ≤ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2160 ∀wral 2468 ∃wrex 2469 ⊆ wss 3144 class class class wbr 4018 supcsup 7006 ℝcr 7835 < clt 8017 ≤ cle 8018 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4189 ax-pr 4224 ax-un 4448 ax-setind 4551 ax-cnex 7927 ax-resscn 7928 ax-pre-ltirr 7948 ax-pre-ltwlin 7949 ax-pre-lttrn 7950 ax-pre-apti 7951 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2754 df-sbc 2978 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-br 4019 df-opab 4080 df-po 4311 df-iso 4312 df-xp 4647 df-cnv 4649 df-iota 5193 df-riota 5848 df-sup 7008 df-pnf 8019 df-mnf 8020 df-xr 8021 df-ltxr 8022 df-le 8023 |
This theorem is referenced by: suprzclex 9376 suplociccex 14540 |
Copyright terms: Public domain | W3C validator |