ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suprleubex GIF version

Theorem suprleubex 9097
Description: The supremum of a nonempty bounded set of reals is less than or equal to an upper bound. (Contributed by NM, 18-Mar-2005.) (Revised by Mario Carneiro, 6-Sep-2014.)
Hypotheses
Ref Expression
suprubex.ex (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
suprubex.ss (𝜑𝐴 ⊆ ℝ)
suprlubex.b (𝜑𝐵 ∈ ℝ)
Assertion
Ref Expression
suprleubex (𝜑 → (sup(𝐴, ℝ, < ) ≤ 𝐵 ↔ ∀𝑧𝐴 𝑧𝐵))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝜑,𝑥   𝑧,𝐵
Allowed substitution hints:   𝜑(𝑦,𝑧)   𝐵(𝑥,𝑦)

Proof of Theorem suprleubex
Dummy variables 𝑓 𝑔 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lttri3 8222 . . . . . . . 8 ((𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓)))
21adantl 277 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ)) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓)))
3 suprubex.ex . . . . . . 7 (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
42, 3supclti 7161 . . . . . 6 (𝜑 → sup(𝐴, ℝ, < ) ∈ ℝ)
5 suprlubex.b . . . . . 6 (𝜑𝐵 ∈ ℝ)
64, 5lenltd 8260 . . . . 5 (𝜑 → (sup(𝐴, ℝ, < ) ≤ 𝐵 ↔ ¬ 𝐵 < sup(𝐴, ℝ, < )))
7 suprubex.ss . . . . . 6 (𝜑𝐴 ⊆ ℝ)
83, 7, 5suprnubex 9096 . . . . 5 (𝜑 → (¬ 𝐵 < sup(𝐴, ℝ, < ) ↔ ∀𝑧𝐴 ¬ 𝐵 < 𝑧))
96, 8bitrd 188 . . . 4 (𝜑 → (sup(𝐴, ℝ, < ) ≤ 𝐵 ↔ ∀𝑧𝐴 ¬ 𝐵 < 𝑧))
10 breq2 4086 . . . . . 6 (𝑤 = 𝑧 → (𝐵 < 𝑤𝐵 < 𝑧))
1110notbid 671 . . . . 5 (𝑤 = 𝑧 → (¬ 𝐵 < 𝑤 ↔ ¬ 𝐵 < 𝑧))
1211cbvralv 2765 . . . 4 (∀𝑤𝐴 ¬ 𝐵 < 𝑤 ↔ ∀𝑧𝐴 ¬ 𝐵 < 𝑧)
139, 12bitr4di 198 . . 3 (𝜑 → (sup(𝐴, ℝ, < ) ≤ 𝐵 ↔ ∀𝑤𝐴 ¬ 𝐵 < 𝑤))
147sselda 3224 . . . . 5 ((𝜑𝑤𝐴) → 𝑤 ∈ ℝ)
155adantr 276 . . . . 5 ((𝜑𝑤𝐴) → 𝐵 ∈ ℝ)
1614, 15lenltd 8260 . . . 4 ((𝜑𝑤𝐴) → (𝑤𝐵 ↔ ¬ 𝐵 < 𝑤))
1716ralbidva 2526 . . 3 (𝜑 → (∀𝑤𝐴 𝑤𝐵 ↔ ∀𝑤𝐴 ¬ 𝐵 < 𝑤))
1813, 17bitr4d 191 . 2 (𝜑 → (sup(𝐴, ℝ, < ) ≤ 𝐵 ↔ ∀𝑤𝐴 𝑤𝐵))
19 breq1 4085 . . 3 (𝑤 = 𝑧 → (𝑤𝐵𝑧𝐵))
2019cbvralv 2765 . 2 (∀𝑤𝐴 𝑤𝐵 ↔ ∀𝑧𝐴 𝑧𝐵)
2118, 20bitrdi 196 1 (𝜑 → (sup(𝐴, ℝ, < ) ≤ 𝐵 ↔ ∀𝑧𝐴 𝑧𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wcel 2200  wral 2508  wrex 2509  wss 3197   class class class wbr 4082  supcsup 7145  cr 7994   < clt 8177  cle 8178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-po 4386  df-iso 4387  df-xp 4724  df-cnv 4726  df-iota 5277  df-riota 5953  df-sup 7147  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183
This theorem is referenced by:  suprzclex  9541  suplociccex  15293
  Copyright terms: Public domain W3C validator