![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > suprleubex | GIF version |
Description: The supremum of a nonempty bounded set of reals is less than or equal to an upper bound. (Contributed by NM, 18-Mar-2005.) (Revised by Mario Carneiro, 6-Sep-2014.) |
Ref | Expression |
---|---|
suprubex.ex | ⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) |
suprubex.ss | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
suprlubex.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
Ref | Expression |
---|---|
suprleubex | ⊢ (𝜑 → (sup(𝐴, ℝ, < ) ≤ 𝐵 ↔ ∀𝑧 ∈ 𝐴 𝑧 ≤ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lttri3 7468 | . . . . . . . 8 ⊢ ((𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓))) | |
2 | 1 | adantl 271 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ)) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓))) |
3 | suprubex.ex | . . . . . . 7 ⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) | |
4 | 2, 3 | supclti 6600 | . . . . . 6 ⊢ (𝜑 → sup(𝐴, ℝ, < ) ∈ ℝ) |
5 | suprlubex.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
6 | 4, 5 | lenltd 7504 | . . . . 5 ⊢ (𝜑 → (sup(𝐴, ℝ, < ) ≤ 𝐵 ↔ ¬ 𝐵 < sup(𝐴, ℝ, < ))) |
7 | suprubex.ss | . . . . . 6 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
8 | 3, 7, 5 | suprnubex 8308 | . . . . 5 ⊢ (𝜑 → (¬ 𝐵 < sup(𝐴, ℝ, < ) ↔ ∀𝑧 ∈ 𝐴 ¬ 𝐵 < 𝑧)) |
9 | 6, 8 | bitrd 186 | . . . 4 ⊢ (𝜑 → (sup(𝐴, ℝ, < ) ≤ 𝐵 ↔ ∀𝑧 ∈ 𝐴 ¬ 𝐵 < 𝑧)) |
10 | breq2 3815 | . . . . . 6 ⊢ (𝑤 = 𝑧 → (𝐵 < 𝑤 ↔ 𝐵 < 𝑧)) | |
11 | 10 | notbid 625 | . . . . 5 ⊢ (𝑤 = 𝑧 → (¬ 𝐵 < 𝑤 ↔ ¬ 𝐵 < 𝑧)) |
12 | 11 | cbvralv 2583 | . . . 4 ⊢ (∀𝑤 ∈ 𝐴 ¬ 𝐵 < 𝑤 ↔ ∀𝑧 ∈ 𝐴 ¬ 𝐵 < 𝑧) |
13 | 9, 12 | syl6bbr 196 | . . 3 ⊢ (𝜑 → (sup(𝐴, ℝ, < ) ≤ 𝐵 ↔ ∀𝑤 ∈ 𝐴 ¬ 𝐵 < 𝑤)) |
14 | 7 | sselda 3010 | . . . . 5 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → 𝑤 ∈ ℝ) |
15 | 5 | adantr 270 | . . . . 5 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → 𝐵 ∈ ℝ) |
16 | 14, 15 | lenltd 7504 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝑤 ≤ 𝐵 ↔ ¬ 𝐵 < 𝑤)) |
17 | 16 | ralbidva 2370 | . . 3 ⊢ (𝜑 → (∀𝑤 ∈ 𝐴 𝑤 ≤ 𝐵 ↔ ∀𝑤 ∈ 𝐴 ¬ 𝐵 < 𝑤)) |
18 | 13, 17 | bitr4d 189 | . 2 ⊢ (𝜑 → (sup(𝐴, ℝ, < ) ≤ 𝐵 ↔ ∀𝑤 ∈ 𝐴 𝑤 ≤ 𝐵)) |
19 | breq1 3814 | . . 3 ⊢ (𝑤 = 𝑧 → (𝑤 ≤ 𝐵 ↔ 𝑧 ≤ 𝐵)) | |
20 | 19 | cbvralv 2583 | . 2 ⊢ (∀𝑤 ∈ 𝐴 𝑤 ≤ 𝐵 ↔ ∀𝑧 ∈ 𝐴 𝑧 ≤ 𝐵) |
21 | 18, 20 | syl6bb 194 | 1 ⊢ (𝜑 → (sup(𝐴, ℝ, < ) ≤ 𝐵 ↔ ∀𝑧 ∈ 𝐴 𝑧 ≤ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 102 ↔ wb 103 ∈ wcel 1434 ∀wral 2353 ∃wrex 2354 ⊆ wss 2984 class class class wbr 3811 supcsup 6584 ℝcr 7252 < clt 7425 ≤ cle 7426 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-sep 3922 ax-pow 3974 ax-pr 4000 ax-un 4224 ax-setind 4316 ax-cnex 7339 ax-resscn 7340 ax-pre-ltirr 7360 ax-pre-ltwlin 7361 ax-pre-lttrn 7362 ax-pre-apti 7363 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1688 df-eu 1946 df-mo 1947 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ne 2250 df-nel 2345 df-ral 2358 df-rex 2359 df-reu 2360 df-rmo 2361 df-rab 2362 df-v 2614 df-sbc 2827 df-dif 2986 df-un 2988 df-in 2990 df-ss 2997 df-pw 3408 df-sn 3428 df-pr 3429 df-op 3431 df-uni 3628 df-br 3812 df-opab 3866 df-po 4087 df-iso 4088 df-xp 4407 df-cnv 4409 df-iota 4934 df-riota 5547 df-sup 6586 df-pnf 7427 df-mnf 7428 df-xr 7429 df-ltxr 7430 df-le 7431 |
This theorem is referenced by: suprzclex 8740 |
Copyright terms: Public domain | W3C validator |