| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > topnfn | GIF version | ||
| Description: The topology extractor function is a function on the universe. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| Ref | Expression |
|---|---|
| topnfn | ⊢ TopOpen Fn V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | restfn 13075 | . . 3 ⊢ ↾t Fn (V × V) | |
| 2 | tsetslid 13020 | . . . . 5 ⊢ (TopSet = Slot (TopSet‘ndx) ∧ (TopSet‘ndx) ∈ ℕ) | |
| 3 | 2 | slotex 12859 | . . . 4 ⊢ (𝑤 ∈ V → (TopSet‘𝑤) ∈ V) |
| 4 | 3 | elv 2776 | . . 3 ⊢ (TopSet‘𝑤) ∈ V |
| 5 | baseslid 12889 | . . . . 5 ⊢ (Base = Slot (Base‘ndx) ∧ (Base‘ndx) ∈ ℕ) | |
| 6 | 5 | slotex 12859 | . . . 4 ⊢ (𝑤 ∈ V → (Base‘𝑤) ∈ V) |
| 7 | 6 | elv 2776 | . . 3 ⊢ (Base‘𝑤) ∈ V |
| 8 | fnovex 5977 | . . 3 ⊢ (( ↾t Fn (V × V) ∧ (TopSet‘𝑤) ∈ V ∧ (Base‘𝑤) ∈ V) → ((TopSet‘𝑤) ↾t (Base‘𝑤)) ∈ V) | |
| 9 | 1, 4, 7, 8 | mp3an 1350 | . 2 ⊢ ((TopSet‘𝑤) ↾t (Base‘𝑤)) ∈ V |
| 10 | df-topn 13074 | . 2 ⊢ TopOpen = (𝑤 ∈ V ↦ ((TopSet‘𝑤) ↾t (Base‘𝑤))) | |
| 11 | 9, 10 | fnmpti 5404 | 1 ⊢ TopOpen Fn V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2176 Vcvv 2772 × cxp 4673 Fn wfn 5266 ‘cfv 5271 (class class class)co 5944 Basecbs 12832 TopSetcts 12915 ↾t crest 13071 TopOpenctopn 13072 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-cnex 8016 ax-resscn 8017 ax-1re 8019 ax-addrcl 8022 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-ov 5947 df-oprab 5948 df-mpo 5949 df-1st 6226 df-2nd 6227 df-inn 9037 df-2 9095 df-3 9096 df-4 9097 df-5 9098 df-6 9099 df-7 9100 df-8 9101 df-9 9102 df-ndx 12835 df-slot 12836 df-base 12838 df-tset 12928 df-rest 13073 df-topn 13074 |
| This theorem is referenced by: prdsex 13101 prdsval 13105 prdsbaslemss 13106 psrval 14428 fnpsr 14429 psrbasg 14436 psrplusgg 14440 istps 14504 |
| Copyright terms: Public domain | W3C validator |