ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  topnfn GIF version

Theorem topnfn 12946
Description: The topology extractor function is a function on the universe. (Contributed by Mario Carneiro, 13-Aug-2015.)
Assertion
Ref Expression
topnfn TopOpen Fn V

Proof of Theorem topnfn
StepHypRef Expression
1 restfn 12945 . . 3 t Fn (V × V)
2 tsetslid 12890 . . . . 5 (TopSet = Slot (TopSet‘ndx) ∧ (TopSet‘ndx) ∈ ℕ)
32slotex 12730 . . . 4 (𝑤 ∈ V → (TopSet‘𝑤) ∈ V)
43elv 2767 . . 3 (TopSet‘𝑤) ∈ V
5 baseslid 12760 . . . . 5 (Base = Slot (Base‘ndx) ∧ (Base‘ndx) ∈ ℕ)
65slotex 12730 . . . 4 (𝑤 ∈ V → (Base‘𝑤) ∈ V)
76elv 2767 . . 3 (Base‘𝑤) ∈ V
8 fnovex 5958 . . 3 (( ↾t Fn (V × V) ∧ (TopSet‘𝑤) ∈ V ∧ (Base‘𝑤) ∈ V) → ((TopSet‘𝑤) ↾t (Base‘𝑤)) ∈ V)
91, 4, 7, 8mp3an 1348 . 2 ((TopSet‘𝑤) ↾t (Base‘𝑤)) ∈ V
10 df-topn 12944 . 2 TopOpen = (𝑤 ∈ V ↦ ((TopSet‘𝑤) ↾t (Base‘𝑤)))
119, 10fnmpti 5389 1 TopOpen Fn V
Colors of variables: wff set class
Syntax hints:  wcel 2167  Vcvv 2763   × cxp 4662   Fn wfn 5254  cfv 5259  (class class class)co 5925  Basecbs 12703  TopSetcts 12786  t crest 12941  TopOpenctopn 12942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-cnex 7987  ax-resscn 7988  ax-1re 7990  ax-addrcl 7993
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-5 9069  df-6 9070  df-7 9071  df-8 9072  df-9 9073  df-ndx 12706  df-slot 12707  df-base 12709  df-tset 12799  df-rest 12943  df-topn 12944
This theorem is referenced by:  prdsex  12971  prdsval  12975  prdsbaslemss  12976  psrval  14296  fnpsr  14297  psrbasg  14303  psrplusgg  14306  istps  14352
  Copyright terms: Public domain W3C validator