Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > topnfn | GIF version |
Description: The topology extractor function is a function on the universe. (Contributed by Mario Carneiro, 13-Aug-2015.) |
Ref | Expression |
---|---|
topnfn | ⊢ TopOpen Fn V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | restfn 12560 | . . 3 ⊢ ↾t Fn (V × V) | |
2 | tsetslid 12545 | . . . . 5 ⊢ (TopSet = Slot (TopSet‘ndx) ∧ (TopSet‘ndx) ∈ ℕ) | |
3 | 2 | slotex 12421 | . . . 4 ⊢ (𝑤 ∈ V → (TopSet‘𝑤) ∈ V) |
4 | 3 | elv 2730 | . . 3 ⊢ (TopSet‘𝑤) ∈ V |
5 | baseslid 12450 | . . . . 5 ⊢ (Base = Slot (Base‘ndx) ∧ (Base‘ndx) ∈ ℕ) | |
6 | 5 | slotex 12421 | . . . 4 ⊢ (𝑤 ∈ V → (Base‘𝑤) ∈ V) |
7 | 6 | elv 2730 | . . 3 ⊢ (Base‘𝑤) ∈ V |
8 | fnovex 5875 | . . 3 ⊢ (( ↾t Fn (V × V) ∧ (TopSet‘𝑤) ∈ V ∧ (Base‘𝑤) ∈ V) → ((TopSet‘𝑤) ↾t (Base‘𝑤)) ∈ V) | |
9 | 1, 4, 7, 8 | mp3an 1327 | . 2 ⊢ ((TopSet‘𝑤) ↾t (Base‘𝑤)) ∈ V |
10 | df-topn 12559 | . 2 ⊢ TopOpen = (𝑤 ∈ V ↦ ((TopSet‘𝑤) ↾t (Base‘𝑤))) | |
11 | 9, 10 | fnmpti 5316 | 1 ⊢ TopOpen Fn V |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2136 Vcvv 2726 × cxp 4602 Fn wfn 5183 ‘cfv 5188 (class class class)co 5842 Basecbs 12394 TopSetcts 12463 ↾t crest 12556 TopOpenctopn 12557 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-cnex 7844 ax-resscn 7845 ax-1re 7847 ax-addrcl 7850 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-inn 8858 df-2 8916 df-3 8917 df-4 8918 df-5 8919 df-6 8920 df-7 8921 df-8 8922 df-9 8923 df-ndx 12397 df-slot 12398 df-base 12400 df-tset 12476 df-rest 12558 df-topn 12559 |
This theorem is referenced by: istps 12680 |
Copyright terms: Public domain | W3C validator |