![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > topnfn | GIF version |
Description: The topology extractor function is a function on the universe. (Contributed by Mario Carneiro, 13-Aug-2015.) |
Ref | Expression |
---|---|
topnfn | ⊢ TopOpen Fn V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | restfn 12697 | . . 3 ⊢ ↾t Fn (V × V) | |
2 | tsetslid 12648 | . . . . 5 ⊢ (TopSet = Slot (TopSet‘ndx) ∧ (TopSet‘ndx) ∈ ℕ) | |
3 | 2 | slotex 12491 | . . . 4 ⊢ (𝑤 ∈ V → (TopSet‘𝑤) ∈ V) |
4 | 3 | elv 2743 | . . 3 ⊢ (TopSet‘𝑤) ∈ V |
5 | baseslid 12521 | . . . . 5 ⊢ (Base = Slot (Base‘ndx) ∧ (Base‘ndx) ∈ ℕ) | |
6 | 5 | slotex 12491 | . . . 4 ⊢ (𝑤 ∈ V → (Base‘𝑤) ∈ V) |
7 | 6 | elv 2743 | . . 3 ⊢ (Base‘𝑤) ∈ V |
8 | fnovex 5910 | . . 3 ⊢ (( ↾t Fn (V × V) ∧ (TopSet‘𝑤) ∈ V ∧ (Base‘𝑤) ∈ V) → ((TopSet‘𝑤) ↾t (Base‘𝑤)) ∈ V) | |
9 | 1, 4, 7, 8 | mp3an 1337 | . 2 ⊢ ((TopSet‘𝑤) ↾t (Base‘𝑤)) ∈ V |
10 | df-topn 12696 | . 2 ⊢ TopOpen = (𝑤 ∈ V ↦ ((TopSet‘𝑤) ↾t (Base‘𝑤))) | |
11 | 9, 10 | fnmpti 5346 | 1 ⊢ TopOpen Fn V |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2148 Vcvv 2739 × cxp 4626 Fn wfn 5213 ‘cfv 5218 (class class class)co 5877 Basecbs 12464 TopSetcts 12544 ↾t crest 12693 TopOpenctopn 12694 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-cnex 7904 ax-resscn 7905 ax-1re 7907 ax-addrcl 7910 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-ov 5880 df-oprab 5881 df-mpo 5882 df-1st 6143 df-2nd 6144 df-inn 8922 df-2 8980 df-3 8981 df-4 8982 df-5 8983 df-6 8984 df-7 8985 df-8 8986 df-9 8987 df-ndx 12467 df-slot 12468 df-base 12470 df-tset 12557 df-rest 12695 df-topn 12696 |
This theorem is referenced by: prdsex 12723 istps 13617 |
Copyright terms: Public domain | W3C validator |