ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  umgrislfupgrenlem Unicode version

Theorem umgrislfupgrenlem 15806
Description: Lemma for umgrislfupgrdom 15807. (Contributed by AV, 27-Jan-2021.)
Assertion
Ref Expression
umgrislfupgrenlem  |-  ( { x  e.  ~P V  |  ( x  ~~  1o  \/  x  ~~  2o ) }  i^i  { x  e.  ~P V  |  2o  ~<_  x } )  =  {
x  e.  ~P V  |  x  ~~  2o }

Proof of Theorem umgrislfupgrenlem
StepHypRef Expression
1 inrab 3449 . 2  |-  ( { x  e.  ~P V  |  ( x  ~~  1o  \/  x  ~~  2o ) }  i^i  { x  e.  ~P V  |  2o  ~<_  x } )  =  {
x  e.  ~P V  |  ( ( x 
~~  1o  \/  x  ~~  2o )  /\  2o  ~<_  x ) }
2 1ndom2 6982 . . . . . . 7  |-  -.  2o  ~<_  1o
3 domentr 6901 . . . . . . . 8  |-  ( ( 2o  ~<_  x  /\  x  ~~  1o )  ->  2o  ~<_  1o )
43ex 115 . . . . . . 7  |-  ( 2o  ~<_  x  ->  ( x  ~~  1o  ->  2o  ~<_  1o ) )
52, 4mtoi 666 . . . . . 6  |-  ( 2o  ~<_  x  ->  -.  x  ~~  1o )
6 orel1 727 . . . . . 6  |-  ( -.  x  ~~  1o  ->  ( ( x  ~~  1o  \/  x  ~~  2o )  ->  x  ~~  2o ) )
75, 6syl 14 . . . . 5  |-  ( 2o  ~<_  x  ->  ( (
x  ~~  1o  \/  x  ~~  2o )  ->  x  ~~  2o ) )
87impcom 125 . . . 4  |-  ( ( ( x  ~~  1o  \/  x  ~~  2o )  /\  2o  ~<_  x )  ->  x  ~~  2o )
9 olc 713 . . . . 5  |-  ( x 
~~  2o  ->  ( x 
~~  1o  \/  x  ~~  2o ) )
10 ensymb 6890 . . . . . 6  |-  ( 2o 
~~  x  <->  x  ~~  2o )
11 endom 6872 . . . . . 6  |-  ( 2o 
~~  x  ->  2o  ~<_  x )
1210, 11sylbir 135 . . . . 5  |-  ( x 
~~  2o  ->  2o  ~<_  x )
139, 12jca 306 . . . 4  |-  ( x 
~~  2o  ->  ( ( x  ~~  1o  \/  x  ~~  2o )  /\  2o 
~<_  x ) )
148, 13impbii 126 . . 3  |-  ( ( ( x  ~~  1o  \/  x  ~~  2o )  /\  2o  ~<_  x )  <-> 
x  ~~  2o )
1514rabbii 2759 . 2  |-  { x  e.  ~P V  |  ( ( x  ~~  1o  \/  x  ~~  2o )  /\  2o  ~<_  x ) }  =  { x  e.  ~P V  |  x 
~~  2o }
161, 15eqtri 2227 1  |-  ( { x  e.  ~P V  |  ( x  ~~  1o  \/  x  ~~  2o ) }  i^i  { x  e.  ~P V  |  2o  ~<_  x } )  =  {
x  e.  ~P V  |  x  ~~  2o }
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 710    = wceq 1373   {crab 2489    i^i cin 3169   ~Pcpw 3621   class class class wbr 4054   1oc1o 6513   2oc2o 6514    ~~ cen 6843    ~<_ cdom 6844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-nul 4181  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-iinf 4649
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3003  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-br 4055  df-opab 4117  df-tr 4154  df-id 4353  df-iord 4426  df-on 4428  df-suc 4431  df-iom 4652  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-f1 5290  df-fo 5291  df-f1o 5292  df-fv 5293  df-1o 6520  df-2o 6521  df-er 6638  df-en 6846  df-dom 6847
This theorem is referenced by:  umgrislfupgrdom  15807
  Copyright terms: Public domain W3C validator