ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  umgrislfupgrenlem Unicode version

Theorem umgrislfupgrenlem 15922
Description: Lemma for umgrislfupgrdom 15923. (Contributed by AV, 27-Jan-2021.)
Assertion
Ref Expression
umgrislfupgrenlem  |-  ( { x  e.  ~P V  |  ( x  ~~  1o  \/  x  ~~  2o ) }  i^i  { x  e.  ~P V  |  2o  ~<_  x } )  =  {
x  e.  ~P V  |  x  ~~  2o }

Proof of Theorem umgrislfupgrenlem
StepHypRef Expression
1 inrab 3476 . 2  |-  ( { x  e.  ~P V  |  ( x  ~~  1o  \/  x  ~~  2o ) }  i^i  { x  e.  ~P V  |  2o  ~<_  x } )  =  {
x  e.  ~P V  |  ( ( x 
~~  1o  \/  x  ~~  2o )  /\  2o  ~<_  x ) }
2 1ndom2 7022 . . . . . . 7  |-  -.  2o  ~<_  1o
3 domentr 6941 . . . . . . . 8  |-  ( ( 2o  ~<_  x  /\  x  ~~  1o )  ->  2o  ~<_  1o )
43ex 115 . . . . . . 7  |-  ( 2o  ~<_  x  ->  ( x  ~~  1o  ->  2o  ~<_  1o ) )
52, 4mtoi 668 . . . . . 6  |-  ( 2o  ~<_  x  ->  -.  x  ~~  1o )
6 orel1 730 . . . . . 6  |-  ( -.  x  ~~  1o  ->  ( ( x  ~~  1o  \/  x  ~~  2o )  ->  x  ~~  2o ) )
75, 6syl 14 . . . . 5  |-  ( 2o  ~<_  x  ->  ( (
x  ~~  1o  \/  x  ~~  2o )  ->  x  ~~  2o ) )
87impcom 125 . . . 4  |-  ( ( ( x  ~~  1o  \/  x  ~~  2o )  /\  2o  ~<_  x )  ->  x  ~~  2o )
9 olc 716 . . . . 5  |-  ( x 
~~  2o  ->  ( x 
~~  1o  \/  x  ~~  2o ) )
10 ensymb 6930 . . . . . 6  |-  ( 2o 
~~  x  <->  x  ~~  2o )
11 endom 6912 . . . . . 6  |-  ( 2o 
~~  x  ->  2o  ~<_  x )
1210, 11sylbir 135 . . . . 5  |-  ( x 
~~  2o  ->  2o  ~<_  x )
139, 12jca 306 . . . 4  |-  ( x 
~~  2o  ->  ( ( x  ~~  1o  \/  x  ~~  2o )  /\  2o 
~<_  x ) )
148, 13impbii 126 . . 3  |-  ( ( ( x  ~~  1o  \/  x  ~~  2o )  /\  2o  ~<_  x )  <-> 
x  ~~  2o )
1514rabbii 2785 . 2  |-  { x  e.  ~P V  |  ( ( x  ~~  1o  \/  x  ~~  2o )  /\  2o  ~<_  x ) }  =  { x  e.  ~P V  |  x 
~~  2o }
161, 15eqtri 2250 1  |-  ( { x  e.  ~P V  |  ( x  ~~  1o  \/  x  ~~  2o ) }  i^i  { x  e.  ~P V  |  2o  ~<_  x } )  =  {
x  e.  ~P V  |  x  ~~  2o }
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 713    = wceq 1395   {crab 2512    i^i cin 3196   ~Pcpw 3649   class class class wbr 4082   1oc1o 6553   2oc2o 6554    ~~ cen 6883    ~<_ cdom 6884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-1o 6560  df-2o 6561  df-er 6678  df-en 6886  df-dom 6887
This theorem is referenced by:  umgrislfupgrdom  15923  usgrislfuspgrdom  15982
  Copyright terms: Public domain W3C validator