ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  umgrunop Unicode version

Theorem umgrunop 15912
Description: The union of two multigraphs (with the same vertex set): If  <. V ,  E >. and  <. V ,  F >. are multigraphs, then  <. V ,  E  u.  F >. is a multigraph (the vertex set stays the same, but the edges from both graphs are kept). (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 25-Nov-2020.)
Hypotheses
Ref Expression
umgrun.g  |-  ( ph  ->  G  e. UMGraph )
umgrun.h  |-  ( ph  ->  H  e. UMGraph )
umgrun.e  |-  E  =  (iEdg `  G )
umgrun.f  |-  F  =  (iEdg `  H )
umgrun.vg  |-  V  =  (Vtx `  G )
umgrun.vh  |-  ( ph  ->  (Vtx `  H )  =  V )
umgrun.i  |-  ( ph  ->  ( dom  E  i^i  dom 
F )  =  (/) )
Assertion
Ref Expression
umgrunop  |-  ( ph  -> 
<. V ,  ( E  u.  F ) >.  e. UMGraph )

Proof of Theorem umgrunop
StepHypRef Expression
1 umgrun.g . 2  |-  ( ph  ->  G  e. UMGraph )
2 umgrun.h . 2  |-  ( ph  ->  H  e. UMGraph )
3 umgrun.e . 2  |-  E  =  (iEdg `  G )
4 umgrun.f . 2  |-  F  =  (iEdg `  H )
5 umgrun.vg . 2  |-  V  =  (Vtx `  G )
6 umgrun.vh . 2  |-  ( ph  ->  (Vtx `  H )  =  V )
7 umgrun.i . 2  |-  ( ph  ->  ( dom  E  i^i  dom 
F )  =  (/) )
8 vtxex 15804 . . . . 5  |-  ( G  e. UMGraph  ->  (Vtx `  G
)  e.  _V )
91, 8syl 14 . . . 4  |-  ( ph  ->  (Vtx `  G )  e.  _V )
105, 9eqeltrid 2316 . . 3  |-  ( ph  ->  V  e.  _V )
11 iedgex 15805 . . . . . 6  |-  ( G  e. UMGraph  ->  (iEdg `  G
)  e.  _V )
121, 11syl 14 . . . . 5  |-  ( ph  ->  (iEdg `  G )  e.  _V )
133, 12eqeltrid 2316 . . . 4  |-  ( ph  ->  E  e.  _V )
14 iedgex 15805 . . . . . 6  |-  ( H  e. UMGraph  ->  (iEdg `  H
)  e.  _V )
152, 14syl 14 . . . . 5  |-  ( ph  ->  (iEdg `  H )  e.  _V )
164, 15eqeltrid 2316 . . . 4  |-  ( ph  ->  F  e.  _V )
17 unexg 4531 . . . 4  |-  ( ( E  e.  _V  /\  F  e.  _V )  ->  ( E  u.  F
)  e.  _V )
1813, 16, 17syl2anc 411 . . 3  |-  ( ph  ->  ( E  u.  F
)  e.  _V )
19 opexg 4313 . . 3  |-  ( ( V  e.  _V  /\  ( E  u.  F
)  e.  _V )  -> 
<. V ,  ( E  u.  F ) >.  e.  _V )
2010, 18, 19syl2anc 411 . 2  |-  ( ph  -> 
<. V ,  ( E  u.  F ) >.  e.  _V )
21 opvtxfv 15808 . . 3  |-  ( ( V  e.  _V  /\  ( E  u.  F
)  e.  _V )  ->  (Vtx `  <. V , 
( E  u.  F
) >. )  =  V )
2210, 18, 21syl2anc 411 . 2  |-  ( ph  ->  (Vtx `  <. V , 
( E  u.  F
) >. )  =  V )
23 opiedgfv 15811 . . 3  |-  ( ( V  e.  _V  /\  ( E  u.  F
)  e.  _V )  ->  (iEdg `  <. V , 
( E  u.  F
) >. )  =  ( E  u.  F ) )
2410, 18, 23syl2anc 411 . 2  |-  ( ph  ->  (iEdg `  <. V , 
( E  u.  F
) >. )  =  ( E  u.  F ) )
251, 2, 3, 4, 5, 6, 7, 20, 22, 24umgrun 15911 1  |-  ( ph  -> 
<. V ,  ( E  u.  F ) >.  e. UMGraph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    e. wcel 2200   _Vcvv 2799    u. cun 3195    i^i cin 3196   (/)c0 3491   <.cop 3669   dom cdm 4716   ` cfv 5314  Vtxcvtx 15798  iEdgciedg 15799  UMGraphcumgr 15877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-addcom 8087  ax-mulcom 8088  ax-addass 8089  ax-mulass 8090  ax-distr 8091  ax-i2m1 8092  ax-1rid 8094  ax-0id 8095  ax-rnegex 8096  ax-cnre 8098
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-fo 5320  df-fv 5322  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-sub 8307  df-inn 9099  df-2 9157  df-3 9158  df-4 9159  df-5 9160  df-6 9161  df-7 9162  df-8 9163  df-9 9164  df-n0 9358  df-dec 9567  df-ndx 13021  df-slot 13022  df-base 13024  df-edgf 15791  df-vtx 15800  df-iedg 15801  df-umgren 15879
This theorem is referenced by:  usgrunop  15977
  Copyright terms: Public domain W3C validator