| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > umgrislfupgrenlem | GIF version | ||
| Description: Lemma for umgrislfupgrdom 15807. (Contributed by AV, 27-Jan-2021.) |
| Ref | Expression |
|---|---|
| umgrislfupgrenlem | ⊢ ({𝑥 ∈ 𝒫 𝑉 ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)} ∩ {𝑥 ∈ 𝒫 𝑉 ∣ 2o ≼ 𝑥}) = {𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inrab 3449 | . 2 ⊢ ({𝑥 ∈ 𝒫 𝑉 ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)} ∩ {𝑥 ∈ 𝒫 𝑉 ∣ 2o ≼ 𝑥}) = {𝑥 ∈ 𝒫 𝑉 ∣ ((𝑥 ≈ 1o ∨ 𝑥 ≈ 2o) ∧ 2o ≼ 𝑥)} | |
| 2 | 1ndom2 6982 | . . . . . . 7 ⊢ ¬ 2o ≼ 1o | |
| 3 | domentr 6901 | . . . . . . . 8 ⊢ ((2o ≼ 𝑥 ∧ 𝑥 ≈ 1o) → 2o ≼ 1o) | |
| 4 | 3 | ex 115 | . . . . . . 7 ⊢ (2o ≼ 𝑥 → (𝑥 ≈ 1o → 2o ≼ 1o)) |
| 5 | 2, 4 | mtoi 666 | . . . . . 6 ⊢ (2o ≼ 𝑥 → ¬ 𝑥 ≈ 1o) |
| 6 | orel1 727 | . . . . . 6 ⊢ (¬ 𝑥 ≈ 1o → ((𝑥 ≈ 1o ∨ 𝑥 ≈ 2o) → 𝑥 ≈ 2o)) | |
| 7 | 5, 6 | syl 14 | . . . . 5 ⊢ (2o ≼ 𝑥 → ((𝑥 ≈ 1o ∨ 𝑥 ≈ 2o) → 𝑥 ≈ 2o)) |
| 8 | 7 | impcom 125 | . . . 4 ⊢ (((𝑥 ≈ 1o ∨ 𝑥 ≈ 2o) ∧ 2o ≼ 𝑥) → 𝑥 ≈ 2o) |
| 9 | olc 713 | . . . . 5 ⊢ (𝑥 ≈ 2o → (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)) | |
| 10 | ensymb 6890 | . . . . . 6 ⊢ (2o ≈ 𝑥 ↔ 𝑥 ≈ 2o) | |
| 11 | endom 6872 | . . . . . 6 ⊢ (2o ≈ 𝑥 → 2o ≼ 𝑥) | |
| 12 | 10, 11 | sylbir 135 | . . . . 5 ⊢ (𝑥 ≈ 2o → 2o ≼ 𝑥) |
| 13 | 9, 12 | jca 306 | . . . 4 ⊢ (𝑥 ≈ 2o → ((𝑥 ≈ 1o ∨ 𝑥 ≈ 2o) ∧ 2o ≼ 𝑥)) |
| 14 | 8, 13 | impbii 126 | . . 3 ⊢ (((𝑥 ≈ 1o ∨ 𝑥 ≈ 2o) ∧ 2o ≼ 𝑥) ↔ 𝑥 ≈ 2o) |
| 15 | 14 | rabbii 2759 | . 2 ⊢ {𝑥 ∈ 𝒫 𝑉 ∣ ((𝑥 ≈ 1o ∨ 𝑥 ≈ 2o) ∧ 2o ≼ 𝑥)} = {𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o} |
| 16 | 1, 15 | eqtri 2227 | 1 ⊢ ({𝑥 ∈ 𝒫 𝑉 ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)} ∩ {𝑥 ∈ 𝒫 𝑉 ∣ 2o ≼ 𝑥}) = {𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o} |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 710 = wceq 1373 {crab 2489 ∩ cin 3169 𝒫 cpw 3621 class class class wbr 4054 1oc1o 6513 2oc2o 6514 ≈ cen 6843 ≼ cdom 6844 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4173 ax-nul 4181 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-setind 4598 ax-iinf 4649 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-int 3895 df-br 4055 df-opab 4117 df-tr 4154 df-id 4353 df-iord 4426 df-on 4428 df-suc 4431 df-iom 4652 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-ima 4701 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-f1 5290 df-fo 5291 df-f1o 5292 df-fv 5293 df-1o 6520 df-2o 6521 df-er 6638 df-en 6846 df-dom 6847 |
| This theorem is referenced by: umgrislfupgrdom 15807 |
| Copyright terms: Public domain | W3C validator |