ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xadd4d GIF version

Theorem xadd4d 9842
Description: Rearrangement of 4 terms in a sum for extended addition, analogous to add4d 8088. (Contributed by Alexander van der Vekens, 21-Dec-2017.)
Hypotheses
Ref Expression
xadd4d.1 (𝜑 → (𝐴 ∈ ℝ*𝐴 ≠ -∞))
xadd4d.2 (𝜑 → (𝐵 ∈ ℝ*𝐵 ≠ -∞))
xadd4d.3 (𝜑 → (𝐶 ∈ ℝ*𝐶 ≠ -∞))
xadd4d.4 (𝜑 → (𝐷 ∈ ℝ*𝐷 ≠ -∞))
Assertion
Ref Expression
xadd4d (𝜑 → ((𝐴 +𝑒 𝐵) +𝑒 (𝐶 +𝑒 𝐷)) = ((𝐴 +𝑒 𝐶) +𝑒 (𝐵 +𝑒 𝐷)))

Proof of Theorem xadd4d
StepHypRef Expression
1 xadd4d.3 . . . 4 (𝜑 → (𝐶 ∈ ℝ*𝐶 ≠ -∞))
2 xadd4d.2 . . . 4 (𝜑 → (𝐵 ∈ ℝ*𝐵 ≠ -∞))
3 xadd4d.4 . . . 4 (𝜑 → (𝐷 ∈ ℝ*𝐷 ≠ -∞))
4 xaddass 9826 . . . 4 (((𝐶 ∈ ℝ*𝐶 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐷 ∈ ℝ*𝐷 ≠ -∞)) → ((𝐶 +𝑒 𝐵) +𝑒 𝐷) = (𝐶 +𝑒 (𝐵 +𝑒 𝐷)))
51, 2, 3, 4syl3anc 1233 . . 3 (𝜑 → ((𝐶 +𝑒 𝐵) +𝑒 𝐷) = (𝐶 +𝑒 (𝐵 +𝑒 𝐷)))
65oveq2d 5869 . 2 (𝜑 → (𝐴 +𝑒 ((𝐶 +𝑒 𝐵) +𝑒 𝐷)) = (𝐴 +𝑒 (𝐶 +𝑒 (𝐵 +𝑒 𝐷))))
7 xadd4d.1 . . . 4 (𝜑 → (𝐴 ∈ ℝ*𝐴 ≠ -∞))
81simpld 111 . . . . 5 (𝜑𝐶 ∈ ℝ*)
93simpld 111 . . . . 5 (𝜑𝐷 ∈ ℝ*)
108, 9xaddcld 9841 . . . 4 (𝜑 → (𝐶 +𝑒 𝐷) ∈ ℝ*)
11 xaddnemnf 9814 . . . . 5 (((𝐶 ∈ ℝ*𝐶 ≠ -∞) ∧ (𝐷 ∈ ℝ*𝐷 ≠ -∞)) → (𝐶 +𝑒 𝐷) ≠ -∞)
121, 3, 11syl2anc 409 . . . 4 (𝜑 → (𝐶 +𝑒 𝐷) ≠ -∞)
13 xaddass 9826 . . . 4 (((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ ((𝐶 +𝑒 𝐷) ∈ ℝ* ∧ (𝐶 +𝑒 𝐷) ≠ -∞)) → ((𝐴 +𝑒 𝐵) +𝑒 (𝐶 +𝑒 𝐷)) = (𝐴 +𝑒 (𝐵 +𝑒 (𝐶 +𝑒 𝐷))))
147, 2, 10, 12, 13syl112anc 1237 . . 3 (𝜑 → ((𝐴 +𝑒 𝐵) +𝑒 (𝐶 +𝑒 𝐷)) = (𝐴 +𝑒 (𝐵 +𝑒 (𝐶 +𝑒 𝐷))))
152simpld 111 . . . . . . 7 (𝜑𝐵 ∈ ℝ*)
16 xaddcom 9818 . . . . . . 7 ((𝐶 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 +𝑒 𝐵) = (𝐵 +𝑒 𝐶))
178, 15, 16syl2anc 409 . . . . . 6 (𝜑 → (𝐶 +𝑒 𝐵) = (𝐵 +𝑒 𝐶))
1817oveq1d 5868 . . . . 5 (𝜑 → ((𝐶 +𝑒 𝐵) +𝑒 𝐷) = ((𝐵 +𝑒 𝐶) +𝑒 𝐷))
19 xaddass 9826 . . . . . 6 (((𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞) ∧ (𝐷 ∈ ℝ*𝐷 ≠ -∞)) → ((𝐵 +𝑒 𝐶) +𝑒 𝐷) = (𝐵 +𝑒 (𝐶 +𝑒 𝐷)))
202, 1, 3, 19syl3anc 1233 . . . . 5 (𝜑 → ((𝐵 +𝑒 𝐶) +𝑒 𝐷) = (𝐵 +𝑒 (𝐶 +𝑒 𝐷)))
2118, 20eqtr2d 2204 . . . 4 (𝜑 → (𝐵 +𝑒 (𝐶 +𝑒 𝐷)) = ((𝐶 +𝑒 𝐵) +𝑒 𝐷))
2221oveq2d 5869 . . 3 (𝜑 → (𝐴 +𝑒 (𝐵 +𝑒 (𝐶 +𝑒 𝐷))) = (𝐴 +𝑒 ((𝐶 +𝑒 𝐵) +𝑒 𝐷)))
2314, 22eqtrd 2203 . 2 (𝜑 → ((𝐴 +𝑒 𝐵) +𝑒 (𝐶 +𝑒 𝐷)) = (𝐴 +𝑒 ((𝐶 +𝑒 𝐵) +𝑒 𝐷)))
2415, 9xaddcld 9841 . . 3 (𝜑 → (𝐵 +𝑒 𝐷) ∈ ℝ*)
25 xaddnemnf 9814 . . . 4 (((𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐷 ∈ ℝ*𝐷 ≠ -∞)) → (𝐵 +𝑒 𝐷) ≠ -∞)
262, 3, 25syl2anc 409 . . 3 (𝜑 → (𝐵 +𝑒 𝐷) ≠ -∞)
27 xaddass 9826 . . 3 (((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞) ∧ ((𝐵 +𝑒 𝐷) ∈ ℝ* ∧ (𝐵 +𝑒 𝐷) ≠ -∞)) → ((𝐴 +𝑒 𝐶) +𝑒 (𝐵 +𝑒 𝐷)) = (𝐴 +𝑒 (𝐶 +𝑒 (𝐵 +𝑒 𝐷))))
287, 1, 24, 26, 27syl112anc 1237 . 2 (𝜑 → ((𝐴 +𝑒 𝐶) +𝑒 (𝐵 +𝑒 𝐷)) = (𝐴 +𝑒 (𝐶 +𝑒 (𝐵 +𝑒 𝐷))))
296, 23, 283eqtr4d 2213 1 (𝜑 → ((𝐴 +𝑒 𝐵) +𝑒 (𝐶 +𝑒 𝐷)) = ((𝐴 +𝑒 𝐶) +𝑒 (𝐵 +𝑒 𝐷)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1348  wcel 2141  wne 2340  (class class class)co 5853  -∞cmnf 7952  *cxr 7953   +𝑒 cxad 9727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1re 7868  ax-addrcl 7871  ax-addcom 7874  ax-addass 7876  ax-rnegex 7883
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-pnf 7956  df-mnf 7957  df-xr 7958  df-xadd 9730
This theorem is referenced by:  xnn0add4d  9843
  Copyright terms: Public domain W3C validator