ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xadd4d GIF version

Theorem xadd4d 10027
Description: Rearrangement of 4 terms in a sum for extended addition, analogous to add4d 8261. (Contributed by Alexander van der Vekens, 21-Dec-2017.)
Hypotheses
Ref Expression
xadd4d.1 (𝜑 → (𝐴 ∈ ℝ*𝐴 ≠ -∞))
xadd4d.2 (𝜑 → (𝐵 ∈ ℝ*𝐵 ≠ -∞))
xadd4d.3 (𝜑 → (𝐶 ∈ ℝ*𝐶 ≠ -∞))
xadd4d.4 (𝜑 → (𝐷 ∈ ℝ*𝐷 ≠ -∞))
Assertion
Ref Expression
xadd4d (𝜑 → ((𝐴 +𝑒 𝐵) +𝑒 (𝐶 +𝑒 𝐷)) = ((𝐴 +𝑒 𝐶) +𝑒 (𝐵 +𝑒 𝐷)))

Proof of Theorem xadd4d
StepHypRef Expression
1 xadd4d.3 . . . 4 (𝜑 → (𝐶 ∈ ℝ*𝐶 ≠ -∞))
2 xadd4d.2 . . . 4 (𝜑 → (𝐵 ∈ ℝ*𝐵 ≠ -∞))
3 xadd4d.4 . . . 4 (𝜑 → (𝐷 ∈ ℝ*𝐷 ≠ -∞))
4 xaddass 10011 . . . 4 (((𝐶 ∈ ℝ*𝐶 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐷 ∈ ℝ*𝐷 ≠ -∞)) → ((𝐶 +𝑒 𝐵) +𝑒 𝐷) = (𝐶 +𝑒 (𝐵 +𝑒 𝐷)))
51, 2, 3, 4syl3anc 1250 . . 3 (𝜑 → ((𝐶 +𝑒 𝐵) +𝑒 𝐷) = (𝐶 +𝑒 (𝐵 +𝑒 𝐷)))
65oveq2d 5973 . 2 (𝜑 → (𝐴 +𝑒 ((𝐶 +𝑒 𝐵) +𝑒 𝐷)) = (𝐴 +𝑒 (𝐶 +𝑒 (𝐵 +𝑒 𝐷))))
7 xadd4d.1 . . . 4 (𝜑 → (𝐴 ∈ ℝ*𝐴 ≠ -∞))
81simpld 112 . . . . 5 (𝜑𝐶 ∈ ℝ*)
93simpld 112 . . . . 5 (𝜑𝐷 ∈ ℝ*)
108, 9xaddcld 10026 . . . 4 (𝜑 → (𝐶 +𝑒 𝐷) ∈ ℝ*)
11 xaddnemnf 9999 . . . . 5 (((𝐶 ∈ ℝ*𝐶 ≠ -∞) ∧ (𝐷 ∈ ℝ*𝐷 ≠ -∞)) → (𝐶 +𝑒 𝐷) ≠ -∞)
121, 3, 11syl2anc 411 . . . 4 (𝜑 → (𝐶 +𝑒 𝐷) ≠ -∞)
13 xaddass 10011 . . . 4 (((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ ((𝐶 +𝑒 𝐷) ∈ ℝ* ∧ (𝐶 +𝑒 𝐷) ≠ -∞)) → ((𝐴 +𝑒 𝐵) +𝑒 (𝐶 +𝑒 𝐷)) = (𝐴 +𝑒 (𝐵 +𝑒 (𝐶 +𝑒 𝐷))))
147, 2, 10, 12, 13syl112anc 1254 . . 3 (𝜑 → ((𝐴 +𝑒 𝐵) +𝑒 (𝐶 +𝑒 𝐷)) = (𝐴 +𝑒 (𝐵 +𝑒 (𝐶 +𝑒 𝐷))))
152simpld 112 . . . . . . 7 (𝜑𝐵 ∈ ℝ*)
16 xaddcom 10003 . . . . . . 7 ((𝐶 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 +𝑒 𝐵) = (𝐵 +𝑒 𝐶))
178, 15, 16syl2anc 411 . . . . . 6 (𝜑 → (𝐶 +𝑒 𝐵) = (𝐵 +𝑒 𝐶))
1817oveq1d 5972 . . . . 5 (𝜑 → ((𝐶 +𝑒 𝐵) +𝑒 𝐷) = ((𝐵 +𝑒 𝐶) +𝑒 𝐷))
19 xaddass 10011 . . . . . 6 (((𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞) ∧ (𝐷 ∈ ℝ*𝐷 ≠ -∞)) → ((𝐵 +𝑒 𝐶) +𝑒 𝐷) = (𝐵 +𝑒 (𝐶 +𝑒 𝐷)))
202, 1, 3, 19syl3anc 1250 . . . . 5 (𝜑 → ((𝐵 +𝑒 𝐶) +𝑒 𝐷) = (𝐵 +𝑒 (𝐶 +𝑒 𝐷)))
2118, 20eqtr2d 2240 . . . 4 (𝜑 → (𝐵 +𝑒 (𝐶 +𝑒 𝐷)) = ((𝐶 +𝑒 𝐵) +𝑒 𝐷))
2221oveq2d 5973 . . 3 (𝜑 → (𝐴 +𝑒 (𝐵 +𝑒 (𝐶 +𝑒 𝐷))) = (𝐴 +𝑒 ((𝐶 +𝑒 𝐵) +𝑒 𝐷)))
2314, 22eqtrd 2239 . 2 (𝜑 → ((𝐴 +𝑒 𝐵) +𝑒 (𝐶 +𝑒 𝐷)) = (𝐴 +𝑒 ((𝐶 +𝑒 𝐵) +𝑒 𝐷)))
2415, 9xaddcld 10026 . . 3 (𝜑 → (𝐵 +𝑒 𝐷) ∈ ℝ*)
25 xaddnemnf 9999 . . . 4 (((𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐷 ∈ ℝ*𝐷 ≠ -∞)) → (𝐵 +𝑒 𝐷) ≠ -∞)
262, 3, 25syl2anc 411 . . 3 (𝜑 → (𝐵 +𝑒 𝐷) ≠ -∞)
27 xaddass 10011 . . 3 (((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞) ∧ ((𝐵 +𝑒 𝐷) ∈ ℝ* ∧ (𝐵 +𝑒 𝐷) ≠ -∞)) → ((𝐴 +𝑒 𝐶) +𝑒 (𝐵 +𝑒 𝐷)) = (𝐴 +𝑒 (𝐶 +𝑒 (𝐵 +𝑒 𝐷))))
287, 1, 24, 26, 27syl112anc 1254 . 2 (𝜑 → ((𝐴 +𝑒 𝐶) +𝑒 (𝐵 +𝑒 𝐷)) = (𝐴 +𝑒 (𝐶 +𝑒 (𝐵 +𝑒 𝐷))))
296, 23, 283eqtr4d 2249 1 (𝜑 → ((𝐴 +𝑒 𝐵) +𝑒 (𝐶 +𝑒 𝐷)) = ((𝐴 +𝑒 𝐶) +𝑒 (𝐵 +𝑒 𝐷)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2177  wne 2377  (class class class)co 5957  -∞cmnf 8125  *cxr 8126   +𝑒 cxad 9912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-cnex 8036  ax-resscn 8037  ax-1re 8039  ax-addrcl 8042  ax-addcom 8045  ax-addass 8047  ax-rnegex 8054
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-fv 5288  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-pnf 8129  df-mnf 8130  df-xr 8131  df-xadd 9915
This theorem is referenced by:  xnn0add4d  10028
  Copyright terms: Public domain W3C validator