Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 0lepnf | GIF version |
Description: 0 less than or equal to positive infinity. (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
0lepnf | ⊢ 0 ≤ +∞ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0xr 7941 | . 2 ⊢ 0 ∈ ℝ* | |
2 | pnfge 9721 | . 2 ⊢ (0 ∈ ℝ* → 0 ≤ +∞) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 0 ≤ +∞ |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2136 class class class wbr 3981 0cc0 7749 +∞cpnf 7926 ℝ*cxr 7928 ≤ cle 7930 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4099 ax-pow 4152 ax-pr 4186 ax-un 4410 ax-cnex 7840 ax-resscn 7841 ax-1re 7843 ax-addrcl 7846 ax-rnegex 7858 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ne 2336 df-nel 2431 df-ral 2448 df-rex 2449 df-rab 2452 df-v 2727 df-dif 3117 df-un 3119 df-in 3121 df-ss 3128 df-pw 3560 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-br 3982 df-opab 4043 df-xp 4609 df-cnv 4611 df-pnf 7931 df-mnf 7932 df-xr 7933 df-ltxr 7934 df-le 7935 |
This theorem is referenced by: nn0pnfge0 9723 xsubge0 9813 pcge0 12240 |
Copyright terms: Public domain | W3C validator |