ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pnfge GIF version

Theorem pnfge 9931
Description: Plus infinity is an upper bound for extended reals. (Contributed by NM, 30-Jan-2006.)
Assertion
Ref Expression
pnfge (𝐴 ∈ ℝ*𝐴 ≤ +∞)

Proof of Theorem pnfge
StepHypRef Expression
1 pnfnlt 9929 . 2 (𝐴 ∈ ℝ* → ¬ +∞ < 𝐴)
2 pnfxr 8145 . . 3 +∞ ∈ ℝ*
3 xrlenlt 8157 . . 3 ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴 ≤ +∞ ↔ ¬ +∞ < 𝐴))
42, 3mpan2 425 . 2 (𝐴 ∈ ℝ* → (𝐴 ≤ +∞ ↔ ¬ +∞ < 𝐴))
51, 4mpbird 167 1 (𝐴 ∈ ℝ*𝐴 ≤ +∞)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 105  wcel 2177   class class class wbr 4051  +∞cpnf 8124  *cxr 8126   < clt 8127  cle 8128
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-cnex 8036  ax-resscn 8037
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-opab 4114  df-xp 4689  df-cnv 4691  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132  df-le 8133
This theorem is referenced by:  0lepnf  9932  xnn0dcle  9944  xnn0letri  9945  xrre2  9963  xleadd1a  10015  xltadd1  10018  xlt2add  10022  xsubge0  10023  xlesubadd  10025  xleaddadd  10029  elico2  10079  iccmax  10091  elxrge0  10120  elicore  10431  xqltnle  10432  xrmaxifle  11632  xrmaxadd  11647  xrbdtri  11662  pcdvdsb  12718  pc2dvds  12728  pcaddlem  12737  isxmet2d  14895  blssec  14985
  Copyright terms: Public domain W3C validator