Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pnfge | GIF version |
Description: Plus infinity is an upper bound for extended reals. (Contributed by NM, 30-Jan-2006.) |
Ref | Expression |
---|---|
pnfge | ⊢ (𝐴 ∈ ℝ* → 𝐴 ≤ +∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pnfnlt 9744 | . 2 ⊢ (𝐴 ∈ ℝ* → ¬ +∞ < 𝐴) | |
2 | pnfxr 7972 | . . 3 ⊢ +∞ ∈ ℝ* | |
3 | xrlenlt 7984 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴 ≤ +∞ ↔ ¬ +∞ < 𝐴)) | |
4 | 2, 3 | mpan2 423 | . 2 ⊢ (𝐴 ∈ ℝ* → (𝐴 ≤ +∞ ↔ ¬ +∞ < 𝐴)) |
5 | 1, 4 | mpbird 166 | 1 ⊢ (𝐴 ∈ ℝ* → 𝐴 ≤ +∞) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 104 ∈ wcel 2141 class class class wbr 3989 +∞cpnf 7951 ℝ*cxr 7953 < clt 7954 ≤ cle 7955 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-cnex 7865 ax-resscn 7866 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-xp 4617 df-cnv 4619 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 |
This theorem is referenced by: 0lepnf 9747 xnn0dcle 9759 xnn0letri 9760 xrre2 9778 xleadd1a 9830 xltadd1 9833 xlt2add 9837 xsubge0 9838 xlesubadd 9840 xleaddadd 9844 elico2 9894 iccmax 9906 elxrge0 9935 elicore 10223 xrmaxifle 11209 xrmaxadd 11224 xrbdtri 11239 pcdvdsb 12273 pc2dvds 12283 pcaddlem 12292 isxmet2d 13142 blssec 13232 |
Copyright terms: Public domain | W3C validator |