ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pnfge GIF version

Theorem pnfge 9153
Description: Plus infinity is an upper bound for extended reals. (Contributed by NM, 30-Jan-2006.)
Assertion
Ref Expression
pnfge (𝐴 ∈ ℝ*𝐴 ≤ +∞)

Proof of Theorem pnfge
StepHypRef Expression
1 pnfnlt 9151 . 2 (𝐴 ∈ ℝ* → ¬ +∞ < 𝐴)
2 pnfxr 7442 . . 3 +∞ ∈ ℝ*
3 xrlenlt 7453 . . 3 ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴 ≤ +∞ ↔ ¬ +∞ < 𝐴))
42, 3mpan2 416 . 2 (𝐴 ∈ ℝ* → (𝐴 ≤ +∞ ↔ ¬ +∞ < 𝐴))
51, 4mpbird 165 1 (𝐴 ∈ ℝ*𝐴 ≤ +∞)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 103  wcel 1434   class class class wbr 3811  +∞cpnf 7421  *cxr 7423   < clt 7424  cle 7425
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3922  ax-pow 3974  ax-pr 3999  ax-un 4223  ax-cnex 7338  ax-resscn 7339
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-rab 2362  df-v 2614  df-dif 2986  df-un 2988  df-in 2990  df-ss 2997  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-uni 3628  df-br 3812  df-opab 3866  df-xp 4406  df-cnv 4408  df-pnf 7426  df-mnf 7427  df-xr 7428  df-ltxr 7429  df-le 7430
This theorem is referenced by:  0lepnf  9154  xrre2  9177  elico2  9249  iccmax  9261  elxrge0  9290
  Copyright terms: Public domain W3C validator