| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pnfge | GIF version | ||
| Description: Plus infinity is an upper bound for extended reals. (Contributed by NM, 30-Jan-2006.) |
| Ref | Expression |
|---|---|
| pnfge | ⊢ (𝐴 ∈ ℝ* → 𝐴 ≤ +∞) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pnfnlt 9979 | . 2 ⊢ (𝐴 ∈ ℝ* → ¬ +∞ < 𝐴) | |
| 2 | pnfxr 8195 | . . 3 ⊢ +∞ ∈ ℝ* | |
| 3 | xrlenlt 8207 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴 ≤ +∞ ↔ ¬ +∞ < 𝐴)) | |
| 4 | 2, 3 | mpan2 425 | . 2 ⊢ (𝐴 ∈ ℝ* → (𝐴 ≤ +∞ ↔ ¬ +∞ < 𝐴)) |
| 5 | 1, 4 | mpbird 167 | 1 ⊢ (𝐴 ∈ ℝ* → 𝐴 ≤ +∞) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 ∈ wcel 2200 class class class wbr 4082 +∞cpnf 8174 ℝ*cxr 8176 < clt 8177 ≤ cle 8178 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-cnex 8086 ax-resscn 8087 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-xp 4724 df-cnv 4726 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 |
| This theorem is referenced by: 0lepnf 9982 xnn0dcle 9994 xnn0letri 9995 xrre2 10013 xleadd1a 10065 xltadd1 10068 xlt2add 10072 xsubge0 10073 xlesubadd 10075 xleaddadd 10079 elico2 10129 iccmax 10141 elxrge0 10170 elicore 10481 xqltnle 10482 xrmaxifle 11752 xrmaxadd 11767 xrbdtri 11782 pcdvdsb 12838 pc2dvds 12848 pcaddlem 12857 isxmet2d 15016 blssec 15106 |
| Copyright terms: Public domain | W3C validator |