ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pnfge GIF version

Theorem pnfge 9883
Description: Plus infinity is an upper bound for extended reals. (Contributed by NM, 30-Jan-2006.)
Assertion
Ref Expression
pnfge (𝐴 ∈ ℝ*𝐴 ≤ +∞)

Proof of Theorem pnfge
StepHypRef Expression
1 pnfnlt 9881 . 2 (𝐴 ∈ ℝ* → ¬ +∞ < 𝐴)
2 pnfxr 8098 . . 3 +∞ ∈ ℝ*
3 xrlenlt 8110 . . 3 ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴 ≤ +∞ ↔ ¬ +∞ < 𝐴))
42, 3mpan2 425 . 2 (𝐴 ∈ ℝ* → (𝐴 ≤ +∞ ↔ ¬ +∞ < 𝐴))
51, 4mpbird 167 1 (𝐴 ∈ ℝ*𝐴 ≤ +∞)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 105  wcel 2167   class class class wbr 4034  +∞cpnf 8077  *cxr 8079   < clt 8080  cle 8081
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-cnex 7989  ax-resscn 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-xp 4670  df-cnv 4672  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086
This theorem is referenced by:  0lepnf  9884  xnn0dcle  9896  xnn0letri  9897  xrre2  9915  xleadd1a  9967  xltadd1  9970  xlt2add  9974  xsubge0  9975  xlesubadd  9977  xleaddadd  9981  elico2  10031  iccmax  10043  elxrge0  10072  elicore  10375  xqltnle  10376  xrmaxifle  11430  xrmaxadd  11445  xrbdtri  11460  pcdvdsb  12516  pc2dvds  12526  pcaddlem  12535  isxmet2d  14692  blssec  14782
  Copyright terms: Public domain W3C validator