Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pnfge | GIF version |
Description: Plus infinity is an upper bound for extended reals. (Contributed by NM, 30-Jan-2006.) |
Ref | Expression |
---|---|
pnfge | ⊢ (𝐴 ∈ ℝ* → 𝐴 ≤ +∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pnfnlt 9672 | . 2 ⊢ (𝐴 ∈ ℝ* → ¬ +∞ < 𝐴) | |
2 | pnfxr 7909 | . . 3 ⊢ +∞ ∈ ℝ* | |
3 | xrlenlt 7921 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴 ≤ +∞ ↔ ¬ +∞ < 𝐴)) | |
4 | 2, 3 | mpan2 422 | . 2 ⊢ (𝐴 ∈ ℝ* → (𝐴 ≤ +∞ ↔ ¬ +∞ < 𝐴)) |
5 | 1, 4 | mpbird 166 | 1 ⊢ (𝐴 ∈ ℝ* → 𝐴 ≤ +∞) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 104 ∈ wcel 2125 class class class wbr 3961 +∞cpnf 7888 ℝ*cxr 7890 < clt 7891 ≤ cle 7892 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-13 2127 ax-14 2128 ax-ext 2136 ax-sep 4078 ax-pow 4130 ax-pr 4164 ax-un 4388 ax-cnex 7802 ax-resscn 7803 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-fal 1338 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ne 2325 df-nel 2420 df-ral 2437 df-rex 2438 df-rab 2441 df-v 2711 df-dif 3100 df-un 3102 df-in 3104 df-ss 3111 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-br 3962 df-opab 4022 df-xp 4585 df-cnv 4587 df-pnf 7893 df-mnf 7894 df-xr 7895 df-ltxr 7896 df-le 7897 |
This theorem is referenced by: 0lepnf 9675 xrre2 9703 xleadd1a 9755 xltadd1 9758 xlt2add 9762 xsubge0 9763 xlesubadd 9765 xleaddadd 9769 elico2 9819 iccmax 9831 elxrge0 9860 elicore 10144 xrmaxifle 11120 xrmaxadd 11135 xrbdtri 11150 isxmet2d 12695 blssec 12785 |
Copyright terms: Public domain | W3C validator |