ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pnfge GIF version

Theorem pnfge 9981
Description: Plus infinity is an upper bound for extended reals. (Contributed by NM, 30-Jan-2006.)
Assertion
Ref Expression
pnfge (𝐴 ∈ ℝ*𝐴 ≤ +∞)

Proof of Theorem pnfge
StepHypRef Expression
1 pnfnlt 9979 . 2 (𝐴 ∈ ℝ* → ¬ +∞ < 𝐴)
2 pnfxr 8195 . . 3 +∞ ∈ ℝ*
3 xrlenlt 8207 . . 3 ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴 ≤ +∞ ↔ ¬ +∞ < 𝐴))
42, 3mpan2 425 . 2 (𝐴 ∈ ℝ* → (𝐴 ≤ +∞ ↔ ¬ +∞ < 𝐴))
51, 4mpbird 167 1 (𝐴 ∈ ℝ*𝐴 ≤ +∞)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 105  wcel 2200   class class class wbr 4082  +∞cpnf 8174  *cxr 8176   < clt 8177  cle 8178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-cnex 8086  ax-resscn 8087
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-xp 4724  df-cnv 4726  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183
This theorem is referenced by:  0lepnf  9982  xnn0dcle  9994  xnn0letri  9995  xrre2  10013  xleadd1a  10065  xltadd1  10068  xlt2add  10072  xsubge0  10073  xlesubadd  10075  xleaddadd  10079  elico2  10129  iccmax  10141  elxrge0  10170  elicore  10481  xqltnle  10482  xrmaxifle  11752  xrmaxadd  11767  xrbdtri  11782  pcdvdsb  12838  pc2dvds  12848  pcaddlem  12857  isxmet2d  15016  blssec  15106
  Copyright terms: Public domain W3C validator