Proof of Theorem mulgcd
Step | Hyp | Ref
| Expression |
1 | | elnn0 9092 |
. . 3
⊢ (𝐾 ∈ ℕ0
↔ (𝐾 ∈ ℕ
∨ 𝐾 =
0)) |
2 | | simp1 982 |
. . . . . . . . 9
⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝐾 ∈
ℕ) |
3 | 2 | nnzd 9285 |
. . . . . . . 8
⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝐾 ∈
ℤ) |
4 | | simp2 983 |
. . . . . . . 8
⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈
ℤ) |
5 | 3, 4 | zmulcld 9292 |
. . . . . . 7
⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 · 𝑀) ∈ ℤ) |
6 | | simp3 984 |
. . . . . . . 8
⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈
ℤ) |
7 | 3, 6 | zmulcld 9292 |
. . . . . . 7
⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 · 𝑁) ∈ ℤ) |
8 | 5, 7 | gcdcld 11851 |
. . . . . 6
⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) ∈
ℕ0) |
9 | 2 | nnnn0d 9143 |
. . . . . . 7
⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝐾 ∈
ℕ0) |
10 | | gcdcl 11849 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∈
ℕ0) |
11 | 10 | 3adant1 1000 |
. . . . . . 7
⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∈
ℕ0) |
12 | 9, 11 | nn0mulcld 9148 |
. . . . . 6
⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 · (𝑀 gcd 𝑁)) ∈
ℕ0) |
13 | 8 | nn0cnd 9145 |
. . . . . . . 8
⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) ∈ ℂ) |
14 | 2 | nncnd 8847 |
. . . . . . . 8
⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝐾 ∈
ℂ) |
15 | 2 | nnap0d 8879 |
. . . . . . . 8
⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝐾 # 0) |
16 | 13, 14, 15 | divcanap2d 8665 |
. . . . . . 7
⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 · (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾)) = ((𝐾 · 𝑀) gcd (𝐾 · 𝑁))) |
17 | | gcddvds 11846 |
. . . . . . . . . . . . 13
⊢ (((𝐾 · 𝑀) ∈ ℤ ∧ (𝐾 · 𝑁) ∈ ℤ) → (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) ∥ (𝐾 · 𝑀) ∧ ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) ∥ (𝐾 · 𝑁))) |
18 | 5, 7, 17 | syl2anc 409 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) ∥ (𝐾 · 𝑀) ∧ ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) ∥ (𝐾 · 𝑁))) |
19 | 18 | simpld 111 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) ∥ (𝐾 · 𝑀)) |
20 | 16, 19 | eqbrtrd 3986 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 · (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾)) ∥ (𝐾 · 𝑀)) |
21 | | dvdsmul1 11708 |
. . . . . . . . . . . . . 14
⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → 𝐾 ∥ (𝐾 · 𝑀)) |
22 | 3, 4, 21 | syl2anc 409 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝐾 ∥ (𝐾 · 𝑀)) |
23 | | dvdsmul1 11708 |
. . . . . . . . . . . . . 14
⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝐾 ∥ (𝐾 · 𝑁)) |
24 | 3, 6, 23 | syl2anc 409 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝐾 ∥ (𝐾 · 𝑁)) |
25 | | dvdsgcd 11895 |
. . . . . . . . . . . . . 14
⊢ ((𝐾 ∈ ℤ ∧ (𝐾 · 𝑀) ∈ ℤ ∧ (𝐾 · 𝑁) ∈ ℤ) → ((𝐾 ∥ (𝐾 · 𝑀) ∧ 𝐾 ∥ (𝐾 · 𝑁)) → 𝐾 ∥ ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)))) |
26 | 3, 5, 7, 25 | syl3anc 1220 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 ∥ (𝐾 · 𝑀) ∧ 𝐾 ∥ (𝐾 · 𝑁)) → 𝐾 ∥ ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)))) |
27 | 22, 24, 26 | mp2and 430 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝐾 ∥ ((𝐾 · 𝑀) gcd (𝐾 · 𝑁))) |
28 | 2 | nnne0d 8878 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝐾 ≠ 0) |
29 | 8 | nn0zd 9284 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) ∈ ℤ) |
30 | | dvdsval2 11686 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ ℤ ∧ 𝐾 ≠ 0 ∧ ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) ∈ ℤ) → (𝐾 ∥ ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) ↔ (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾) ∈ ℤ)) |
31 | 3, 28, 29, 30 | syl3anc 1220 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∥ ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) ↔ (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾) ∈ ℤ)) |
32 | 27, 31 | mpbid 146 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾) ∈ ℤ) |
33 | | dvdscmulr 11715 |
. . . . . . . . . . 11
⊢
(((((𝐾 ·
𝑀) gcd (𝐾 · 𝑁)) / 𝐾) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) → ((𝐾 · (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾)) ∥ (𝐾 · 𝑀) ↔ (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾) ∥ 𝑀)) |
34 | 32, 4, 3, 28, 33 | syl112anc 1224 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾)) ∥ (𝐾 · 𝑀) ↔ (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾) ∥ 𝑀)) |
35 | 20, 34 | mpbid 146 |
. . . . . . . . 9
⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾) ∥ 𝑀) |
36 | 18 | simprd 113 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) ∥ (𝐾 · 𝑁)) |
37 | 16, 36 | eqbrtrd 3986 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 · (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾)) ∥ (𝐾 · 𝑁)) |
38 | | dvdscmulr 11715 |
. . . . . . . . . . 11
⊢
(((((𝐾 ·
𝑀) gcd (𝐾 · 𝑁)) / 𝐾) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) → ((𝐾 · (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾)) ∥ (𝐾 · 𝑁) ↔ (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾) ∥ 𝑁)) |
39 | 32, 6, 3, 28, 38 | syl112anc 1224 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾)) ∥ (𝐾 · 𝑁) ↔ (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾) ∥ 𝑁)) |
40 | 37, 39 | mpbid 146 |
. . . . . . . . 9
⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾) ∥ 𝑁) |
41 | | dvdsgcd 11895 |
. . . . . . . . . 10
⊢
(((((𝐾 ·
𝑀) gcd (𝐾 · 𝑁)) / 𝐾) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾) ∥ 𝑀 ∧ (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾) ∥ 𝑁) → (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾) ∥ (𝑀 gcd 𝑁))) |
42 | 32, 4, 6, 41 | syl3anc 1220 |
. . . . . . . . 9
⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) →
(((((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾) ∥ 𝑀 ∧ (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾) ∥ 𝑁) → (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾) ∥ (𝑀 gcd 𝑁))) |
43 | 35, 40, 42 | mp2and 430 |
. . . . . . . 8
⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾) ∥ (𝑀 gcd 𝑁)) |
44 | 11 | nn0zd 9284 |
. . . . . . . . 9
⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∈ ℤ) |
45 | | dvdscmul 11713 |
. . . . . . . . 9
⊢
(((((𝐾 ·
𝑀) gcd (𝐾 · 𝑁)) / 𝐾) ∈ ℤ ∧ (𝑀 gcd 𝑁) ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾) ∥ (𝑀 gcd 𝑁) → (𝐾 · (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾)) ∥ (𝐾 · (𝑀 gcd 𝑁)))) |
46 | 32, 44, 3, 45 | syl3anc 1220 |
. . . . . . . 8
⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) →
((((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾) ∥ (𝑀 gcd 𝑁) → (𝐾 · (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾)) ∥ (𝐾 · (𝑀 gcd 𝑁)))) |
47 | 43, 46 | mpd 13 |
. . . . . . 7
⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 · (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾)) ∥ (𝐾 · (𝑀 gcd 𝑁))) |
48 | 16, 47 | eqbrtrrd 3988 |
. . . . . 6
⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) ∥ (𝐾 · (𝑀 gcd 𝑁))) |
49 | | gcddvds 11846 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁)) |
50 | 49 | 3adant1 1000 |
. . . . . . . . 9
⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁)) |
51 | 50 | simpld 111 |
. . . . . . . 8
⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∥ 𝑀) |
52 | | dvdscmul 11713 |
. . . . . . . . 9
⊢ (((𝑀 gcd 𝑁) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑀 → (𝐾 · (𝑀 gcd 𝑁)) ∥ (𝐾 · 𝑀))) |
53 | 44, 4, 3, 52 | syl3anc 1220 |
. . . . . . . 8
⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑀 → (𝐾 · (𝑀 gcd 𝑁)) ∥ (𝐾 · 𝑀))) |
54 | 51, 53 | mpd 13 |
. . . . . . 7
⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 · (𝑀 gcd 𝑁)) ∥ (𝐾 · 𝑀)) |
55 | 50 | simprd 113 |
. . . . . . . 8
⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∥ 𝑁) |
56 | | dvdscmul 11713 |
. . . . . . . . 9
⊢ (((𝑀 gcd 𝑁) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑁 → (𝐾 · (𝑀 gcd 𝑁)) ∥ (𝐾 · 𝑁))) |
57 | 44, 6, 3, 56 | syl3anc 1220 |
. . . . . . . 8
⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑁 → (𝐾 · (𝑀 gcd 𝑁)) ∥ (𝐾 · 𝑁))) |
58 | 55, 57 | mpd 13 |
. . . . . . 7
⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 · (𝑀 gcd 𝑁)) ∥ (𝐾 · 𝑁)) |
59 | 12 | nn0zd 9284 |
. . . . . . . 8
⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 · (𝑀 gcd 𝑁)) ∈ ℤ) |
60 | | dvdsgcd 11895 |
. . . . . . . 8
⊢ (((𝐾 · (𝑀 gcd 𝑁)) ∈ ℤ ∧ (𝐾 · 𝑀) ∈ ℤ ∧ (𝐾 · 𝑁) ∈ ℤ) → (((𝐾 · (𝑀 gcd 𝑁)) ∥ (𝐾 · 𝑀) ∧ (𝐾 · (𝑀 gcd 𝑁)) ∥ (𝐾 · 𝑁)) → (𝐾 · (𝑀 gcd 𝑁)) ∥ ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)))) |
61 | 59, 5, 7, 60 | syl3anc 1220 |
. . . . . . 7
⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐾 · (𝑀 gcd 𝑁)) ∥ (𝐾 · 𝑀) ∧ (𝐾 · (𝑀 gcd 𝑁)) ∥ (𝐾 · 𝑁)) → (𝐾 · (𝑀 gcd 𝑁)) ∥ ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)))) |
62 | 54, 58, 61 | mp2and 430 |
. . . . . 6
⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 · (𝑀 gcd 𝑁)) ∥ ((𝐾 · 𝑀) gcd (𝐾 · 𝑁))) |
63 | | dvdseq 11739 |
. . . . . 6
⊢
(((((𝐾 ·
𝑀) gcd (𝐾 · 𝑁)) ∈ ℕ0 ∧ (𝐾 · (𝑀 gcd 𝑁)) ∈ ℕ0) ∧
(((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) ∥ (𝐾 · (𝑀 gcd 𝑁)) ∧ (𝐾 · (𝑀 gcd 𝑁)) ∥ ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)))) → ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) = (𝐾 · (𝑀 gcd 𝑁))) |
64 | 8, 12, 48, 62, 63 | syl22anc 1221 |
. . . . 5
⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) = (𝐾 · (𝑀 gcd 𝑁))) |
65 | 64 | 3expib 1188 |
. . . 4
⊢ (𝐾 ∈ ℕ → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) = (𝐾 · (𝑀 gcd 𝑁)))) |
66 | | gcd0val 11843 |
. . . . . . 7
⊢ (0 gcd 0)
= 0 |
67 | 10 | 3adant1 1000 |
. . . . . . . . 9
⊢ ((𝐾 = 0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∈
ℕ0) |
68 | 67 | nn0cnd 9145 |
. . . . . . . 8
⊢ ((𝐾 = 0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∈ ℂ) |
69 | 68 | mul02d 8267 |
. . . . . . 7
⊢ ((𝐾 = 0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 · (𝑀 gcd 𝑁)) = 0) |
70 | 66, 69 | eqtr4id 2209 |
. . . . . 6
⊢ ((𝐾 = 0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 gcd 0) = (0
· (𝑀 gcd 𝑁))) |
71 | | simp1 982 |
. . . . . . . . 9
⊢ ((𝐾 = 0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝐾 = 0) |
72 | 71 | oveq1d 5839 |
. . . . . . . 8
⊢ ((𝐾 = 0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 · 𝑀) = (0 · 𝑀)) |
73 | | zcn 9172 |
. . . . . . . . . 10
⊢ (𝑀 ∈ ℤ → 𝑀 ∈
ℂ) |
74 | 73 | 3ad2ant2 1004 |
. . . . . . . . 9
⊢ ((𝐾 = 0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℂ) |
75 | 74 | mul02d 8267 |
. . . . . . . 8
⊢ ((𝐾 = 0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 · 𝑀) = 0) |
76 | 72, 75 | eqtrd 2190 |
. . . . . . 7
⊢ ((𝐾 = 0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 · 𝑀) = 0) |
77 | 71 | oveq1d 5839 |
. . . . . . . 8
⊢ ((𝐾 = 0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 · 𝑁) = (0 · 𝑁)) |
78 | | zcn 9172 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℤ → 𝑁 ∈
ℂ) |
79 | 78 | 3ad2ant3 1005 |
. . . . . . . . 9
⊢ ((𝐾 = 0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℂ) |
80 | 79 | mul02d 8267 |
. . . . . . . 8
⊢ ((𝐾 = 0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 · 𝑁) = 0) |
81 | 77, 80 | eqtrd 2190 |
. . . . . . 7
⊢ ((𝐾 = 0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 · 𝑁) = 0) |
82 | 76, 81 | oveq12d 5842 |
. . . . . 6
⊢ ((𝐾 = 0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) = (0 gcd 0)) |
83 | 71 | oveq1d 5839 |
. . . . . 6
⊢ ((𝐾 = 0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 · (𝑀 gcd 𝑁)) = (0 · (𝑀 gcd 𝑁))) |
84 | 70, 82, 83 | 3eqtr4d 2200 |
. . . . 5
⊢ ((𝐾 = 0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) = (𝐾 · (𝑀 gcd 𝑁))) |
85 | 84 | 3expib 1188 |
. . . 4
⊢ (𝐾 = 0 → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) = (𝐾 · (𝑀 gcd 𝑁)))) |
86 | 65, 85 | jaoi 706 |
. . 3
⊢ ((𝐾 ∈ ℕ ∨ 𝐾 = 0) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) = (𝐾 · (𝑀 gcd 𝑁)))) |
87 | 1, 86 | sylbi 120 |
. 2
⊢ (𝐾 ∈ ℕ0
→ ((𝑀 ∈ ℤ
∧ 𝑁 ∈ ℤ)
→ ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) = (𝐾 · (𝑀 gcd 𝑁)))) |
88 | 87 | 3impib 1183 |
1
⊢ ((𝐾 ∈ ℕ0
∧ 𝑀 ∈ ℤ
∧ 𝑁 ∈ ℤ)
→ ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) = (𝐾 · (𝑀 gcd 𝑁))) |