ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgcd GIF version

Theorem mulgcd 12153
Description: Distribute multiplication by a nonnegative integer over gcd. (Contributed by Paul Chapman, 22-Jun-2011.) (Proof shortened by Mario Carneiro, 30-May-2014.)
Assertion
Ref Expression
mulgcd ((𝐾 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) = (𝐾 · (𝑀 gcd 𝑁)))

Proof of Theorem mulgcd
StepHypRef Expression
1 elnn0 9242 . . 3 (𝐾 ∈ ℕ0 ↔ (𝐾 ∈ ℕ ∨ 𝐾 = 0))
2 simp1 999 . . . . . . . . 9 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝐾 ∈ ℕ)
32nnzd 9438 . . . . . . . 8 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝐾 ∈ ℤ)
4 simp2 1000 . . . . . . . 8 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℤ)
53, 4zmulcld 9445 . . . . . . 7 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 · 𝑀) ∈ ℤ)
6 simp3 1001 . . . . . . . 8 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ)
73, 6zmulcld 9445 . . . . . . 7 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 · 𝑁) ∈ ℤ)
85, 7gcdcld 12105 . . . . . 6 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) ∈ ℕ0)
92nnnn0d 9293 . . . . . . 7 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝐾 ∈ ℕ0)
10 gcdcl 12103 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∈ ℕ0)
11103adant1 1017 . . . . . . 7 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∈ ℕ0)
129, 11nn0mulcld 9298 . . . . . 6 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 · (𝑀 gcd 𝑁)) ∈ ℕ0)
138nn0cnd 9295 . . . . . . . 8 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) ∈ ℂ)
142nncnd 8996 . . . . . . . 8 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝐾 ∈ ℂ)
152nnap0d 9028 . . . . . . . 8 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝐾 # 0)
1613, 14, 15divcanap2d 8811 . . . . . . 7 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 · (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾)) = ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)))
17 gcddvds 12100 . . . . . . . . . . . . 13 (((𝐾 · 𝑀) ∈ ℤ ∧ (𝐾 · 𝑁) ∈ ℤ) → (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) ∥ (𝐾 · 𝑀) ∧ ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) ∥ (𝐾 · 𝑁)))
185, 7, 17syl2anc 411 . . . . . . . . . . . 12 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) ∥ (𝐾 · 𝑀) ∧ ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) ∥ (𝐾 · 𝑁)))
1918simpld 112 . . . . . . . . . . 11 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) ∥ (𝐾 · 𝑀))
2016, 19eqbrtrd 4051 . . . . . . . . . 10 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 · (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾)) ∥ (𝐾 · 𝑀))
21 dvdsmul1 11956 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → 𝐾 ∥ (𝐾 · 𝑀))
223, 4, 21syl2anc 411 . . . . . . . . . . . . 13 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝐾 ∥ (𝐾 · 𝑀))
23 dvdsmul1 11956 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝐾 ∥ (𝐾 · 𝑁))
243, 6, 23syl2anc 411 . . . . . . . . . . . . 13 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝐾 ∥ (𝐾 · 𝑁))
25 dvdsgcd 12149 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℤ ∧ (𝐾 · 𝑀) ∈ ℤ ∧ (𝐾 · 𝑁) ∈ ℤ) → ((𝐾 ∥ (𝐾 · 𝑀) ∧ 𝐾 ∥ (𝐾 · 𝑁)) → 𝐾 ∥ ((𝐾 · 𝑀) gcd (𝐾 · 𝑁))))
263, 5, 7, 25syl3anc 1249 . . . . . . . . . . . . 13 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 ∥ (𝐾 · 𝑀) ∧ 𝐾 ∥ (𝐾 · 𝑁)) → 𝐾 ∥ ((𝐾 · 𝑀) gcd (𝐾 · 𝑁))))
2722, 24, 26mp2and 433 . . . . . . . . . . . 12 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝐾 ∥ ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)))
282nnne0d 9027 . . . . . . . . . . . . 13 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝐾 ≠ 0)
298nn0zd 9437 . . . . . . . . . . . . 13 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) ∈ ℤ)
30 dvdsval2 11933 . . . . . . . . . . . . 13 ((𝐾 ∈ ℤ ∧ 𝐾 ≠ 0 ∧ ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) ∈ ℤ) → (𝐾 ∥ ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) ↔ (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾) ∈ ℤ))
313, 28, 29, 30syl3anc 1249 . . . . . . . . . . . 12 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∥ ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) ↔ (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾) ∈ ℤ))
3227, 31mpbid 147 . . . . . . . . . . 11 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾) ∈ ℤ)
33 dvdscmulr 11963 . . . . . . . . . . 11 (((((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) → ((𝐾 · (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾)) ∥ (𝐾 · 𝑀) ↔ (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾) ∥ 𝑀))
3432, 4, 3, 28, 33syl112anc 1253 . . . . . . . . . 10 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾)) ∥ (𝐾 · 𝑀) ↔ (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾) ∥ 𝑀))
3520, 34mpbid 147 . . . . . . . . 9 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾) ∥ 𝑀)
3618simprd 114 . . . . . . . . . . 11 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) ∥ (𝐾 · 𝑁))
3716, 36eqbrtrd 4051 . . . . . . . . . 10 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 · (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾)) ∥ (𝐾 · 𝑁))
38 dvdscmulr 11963 . . . . . . . . . . 11 (((((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) → ((𝐾 · (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾)) ∥ (𝐾 · 𝑁) ↔ (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾) ∥ 𝑁))
3932, 6, 3, 28, 38syl112anc 1253 . . . . . . . . . 10 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾)) ∥ (𝐾 · 𝑁) ↔ (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾) ∥ 𝑁))
4037, 39mpbid 147 . . . . . . . . 9 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾) ∥ 𝑁)
41 dvdsgcd 12149 . . . . . . . . . 10 (((((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾) ∥ 𝑀 ∧ (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾) ∥ 𝑁) → (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾) ∥ (𝑀 gcd 𝑁)))
4232, 4, 6, 41syl3anc 1249 . . . . . . . . 9 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾) ∥ 𝑀 ∧ (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾) ∥ 𝑁) → (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾) ∥ (𝑀 gcd 𝑁)))
4335, 40, 42mp2and 433 . . . . . . . 8 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾) ∥ (𝑀 gcd 𝑁))
4411nn0zd 9437 . . . . . . . . 9 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∈ ℤ)
45 dvdscmul 11961 . . . . . . . . 9 (((((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾) ∈ ℤ ∧ (𝑀 gcd 𝑁) ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾) ∥ (𝑀 gcd 𝑁) → (𝐾 · (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾)) ∥ (𝐾 · (𝑀 gcd 𝑁))))
4632, 44, 3, 45syl3anc 1249 . . . . . . . 8 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾) ∥ (𝑀 gcd 𝑁) → (𝐾 · (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾)) ∥ (𝐾 · (𝑀 gcd 𝑁))))
4743, 46mpd 13 . . . . . . 7 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 · (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾)) ∥ (𝐾 · (𝑀 gcd 𝑁)))
4816, 47eqbrtrrd 4053 . . . . . 6 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) ∥ (𝐾 · (𝑀 gcd 𝑁)))
49 gcddvds 12100 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁))
50493adant1 1017 . . . . . . . . 9 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁))
5150simpld 112 . . . . . . . 8 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∥ 𝑀)
52 dvdscmul 11961 . . . . . . . . 9 (((𝑀 gcd 𝑁) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑀 → (𝐾 · (𝑀 gcd 𝑁)) ∥ (𝐾 · 𝑀)))
5344, 4, 3, 52syl3anc 1249 . . . . . . . 8 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑀 → (𝐾 · (𝑀 gcd 𝑁)) ∥ (𝐾 · 𝑀)))
5451, 53mpd 13 . . . . . . 7 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 · (𝑀 gcd 𝑁)) ∥ (𝐾 · 𝑀))
5550simprd 114 . . . . . . . 8 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∥ 𝑁)
56 dvdscmul 11961 . . . . . . . . 9 (((𝑀 gcd 𝑁) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑁 → (𝐾 · (𝑀 gcd 𝑁)) ∥ (𝐾 · 𝑁)))
5744, 6, 3, 56syl3anc 1249 . . . . . . . 8 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑁 → (𝐾 · (𝑀 gcd 𝑁)) ∥ (𝐾 · 𝑁)))
5855, 57mpd 13 . . . . . . 7 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 · (𝑀 gcd 𝑁)) ∥ (𝐾 · 𝑁))
5912nn0zd 9437 . . . . . . . 8 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 · (𝑀 gcd 𝑁)) ∈ ℤ)
60 dvdsgcd 12149 . . . . . . . 8 (((𝐾 · (𝑀 gcd 𝑁)) ∈ ℤ ∧ (𝐾 · 𝑀) ∈ ℤ ∧ (𝐾 · 𝑁) ∈ ℤ) → (((𝐾 · (𝑀 gcd 𝑁)) ∥ (𝐾 · 𝑀) ∧ (𝐾 · (𝑀 gcd 𝑁)) ∥ (𝐾 · 𝑁)) → (𝐾 · (𝑀 gcd 𝑁)) ∥ ((𝐾 · 𝑀) gcd (𝐾 · 𝑁))))
6159, 5, 7, 60syl3anc 1249 . . . . . . 7 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐾 · (𝑀 gcd 𝑁)) ∥ (𝐾 · 𝑀) ∧ (𝐾 · (𝑀 gcd 𝑁)) ∥ (𝐾 · 𝑁)) → (𝐾 · (𝑀 gcd 𝑁)) ∥ ((𝐾 · 𝑀) gcd (𝐾 · 𝑁))))
6254, 58, 61mp2and 433 . . . . . 6 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 · (𝑀 gcd 𝑁)) ∥ ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)))
63 dvdseq 11990 . . . . . 6 (((((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) ∈ ℕ0 ∧ (𝐾 · (𝑀 gcd 𝑁)) ∈ ℕ0) ∧ (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) ∥ (𝐾 · (𝑀 gcd 𝑁)) ∧ (𝐾 · (𝑀 gcd 𝑁)) ∥ ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)))) → ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) = (𝐾 · (𝑀 gcd 𝑁)))
648, 12, 48, 62, 63syl22anc 1250 . . . . 5 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) = (𝐾 · (𝑀 gcd 𝑁)))
65643expib 1208 . . . 4 (𝐾 ∈ ℕ → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) = (𝐾 · (𝑀 gcd 𝑁))))
66 gcd0val 12097 . . . . . . 7 (0 gcd 0) = 0
67103adant1 1017 . . . . . . . . 9 ((𝐾 = 0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∈ ℕ0)
6867nn0cnd 9295 . . . . . . . 8 ((𝐾 = 0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∈ ℂ)
6968mul02d 8411 . . . . . . 7 ((𝐾 = 0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 · (𝑀 gcd 𝑁)) = 0)
7066, 69eqtr4id 2245 . . . . . 6 ((𝐾 = 0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 gcd 0) = (0 · (𝑀 gcd 𝑁)))
71 simp1 999 . . . . . . . . 9 ((𝐾 = 0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝐾 = 0)
7271oveq1d 5933 . . . . . . . 8 ((𝐾 = 0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 · 𝑀) = (0 · 𝑀))
73 zcn 9322 . . . . . . . . . 10 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
74733ad2ant2 1021 . . . . . . . . 9 ((𝐾 = 0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℂ)
7574mul02d 8411 . . . . . . . 8 ((𝐾 = 0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 · 𝑀) = 0)
7672, 75eqtrd 2226 . . . . . . 7 ((𝐾 = 0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 · 𝑀) = 0)
7771oveq1d 5933 . . . . . . . 8 ((𝐾 = 0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 · 𝑁) = (0 · 𝑁))
78 zcn 9322 . . . . . . . . . 10 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
79783ad2ant3 1022 . . . . . . . . 9 ((𝐾 = 0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℂ)
8079mul02d 8411 . . . . . . . 8 ((𝐾 = 0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 · 𝑁) = 0)
8177, 80eqtrd 2226 . . . . . . 7 ((𝐾 = 0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 · 𝑁) = 0)
8276, 81oveq12d 5936 . . . . . 6 ((𝐾 = 0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) = (0 gcd 0))
8371oveq1d 5933 . . . . . 6 ((𝐾 = 0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 · (𝑀 gcd 𝑁)) = (0 · (𝑀 gcd 𝑁)))
8470, 82, 833eqtr4d 2236 . . . . 5 ((𝐾 = 0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) = (𝐾 · (𝑀 gcd 𝑁)))
85843expib 1208 . . . 4 (𝐾 = 0 → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) = (𝐾 · (𝑀 gcd 𝑁))))
8665, 85jaoi 717 . . 3 ((𝐾 ∈ ℕ ∨ 𝐾 = 0) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) = (𝐾 · (𝑀 gcd 𝑁))))
871, 86sylbi 121 . 2 (𝐾 ∈ ℕ0 → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) = (𝐾 · (𝑀 gcd 𝑁))))
88873impib 1203 1 ((𝐾 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) = (𝐾 · (𝑀 gcd 𝑁)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 709  w3a 980   = wceq 1364  wcel 2164  wne 2364   class class class wbr 4029  (class class class)co 5918  cc 7870  0cc0 7872   · cmul 7877   / cdiv 8691  cn 8982  0cn0 9240  cz 9317  cdvds 11930   gcd cgcd 12079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-sup 7043  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-fz 10075  df-fzo 10209  df-fl 10339  df-mod 10394  df-seqfrec 10519  df-exp 10610  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-dvds 11931  df-gcd 12080
This theorem is referenced by:  absmulgcd  12154  mulgcdr  12155  mulgcddvds  12232  qredeu  12235  coprimeprodsq  12395  pythagtriplem4  12406  2sqlem8  15210
  Copyright terms: Public domain W3C validator