ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgcd GIF version

Theorem mulgcd 12503
Description: Distribute multiplication by a nonnegative integer over gcd. (Contributed by Paul Chapman, 22-Jun-2011.) (Proof shortened by Mario Carneiro, 30-May-2014.)
Assertion
Ref Expression
mulgcd ((𝐾 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) = (𝐾 · (𝑀 gcd 𝑁)))

Proof of Theorem mulgcd
StepHypRef Expression
1 elnn0 9339 . . 3 (𝐾 ∈ ℕ0 ↔ (𝐾 ∈ ℕ ∨ 𝐾 = 0))
2 simp1 1002 . . . . . . . . 9 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝐾 ∈ ℕ)
32nnzd 9536 . . . . . . . 8 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝐾 ∈ ℤ)
4 simp2 1003 . . . . . . . 8 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℤ)
53, 4zmulcld 9543 . . . . . . 7 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 · 𝑀) ∈ ℤ)
6 simp3 1004 . . . . . . . 8 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ)
73, 6zmulcld 9543 . . . . . . 7 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 · 𝑁) ∈ ℤ)
85, 7gcdcld 12455 . . . . . 6 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) ∈ ℕ0)
92nnnn0d 9390 . . . . . . 7 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝐾 ∈ ℕ0)
10 gcdcl 12453 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∈ ℕ0)
11103adant1 1020 . . . . . . 7 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∈ ℕ0)
129, 11nn0mulcld 9395 . . . . . 6 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 · (𝑀 gcd 𝑁)) ∈ ℕ0)
138nn0cnd 9392 . . . . . . . 8 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) ∈ ℂ)
142nncnd 9092 . . . . . . . 8 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝐾 ∈ ℂ)
152nnap0d 9124 . . . . . . . 8 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝐾 # 0)
1613, 14, 15divcanap2d 8907 . . . . . . 7 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 · (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾)) = ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)))
17 gcddvds 12450 . . . . . . . . . . . . 13 (((𝐾 · 𝑀) ∈ ℤ ∧ (𝐾 · 𝑁) ∈ ℤ) → (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) ∥ (𝐾 · 𝑀) ∧ ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) ∥ (𝐾 · 𝑁)))
185, 7, 17syl2anc 411 . . . . . . . . . . . 12 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) ∥ (𝐾 · 𝑀) ∧ ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) ∥ (𝐾 · 𝑁)))
1918simpld 112 . . . . . . . . . . 11 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) ∥ (𝐾 · 𝑀))
2016, 19eqbrtrd 4084 . . . . . . . . . 10 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 · (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾)) ∥ (𝐾 · 𝑀))
21 dvdsmul1 12290 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → 𝐾 ∥ (𝐾 · 𝑀))
223, 4, 21syl2anc 411 . . . . . . . . . . . . 13 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝐾 ∥ (𝐾 · 𝑀))
23 dvdsmul1 12290 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝐾 ∥ (𝐾 · 𝑁))
243, 6, 23syl2anc 411 . . . . . . . . . . . . 13 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝐾 ∥ (𝐾 · 𝑁))
25 dvdsgcd 12499 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℤ ∧ (𝐾 · 𝑀) ∈ ℤ ∧ (𝐾 · 𝑁) ∈ ℤ) → ((𝐾 ∥ (𝐾 · 𝑀) ∧ 𝐾 ∥ (𝐾 · 𝑁)) → 𝐾 ∥ ((𝐾 · 𝑀) gcd (𝐾 · 𝑁))))
263, 5, 7, 25syl3anc 1252 . . . . . . . . . . . . 13 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 ∥ (𝐾 · 𝑀) ∧ 𝐾 ∥ (𝐾 · 𝑁)) → 𝐾 ∥ ((𝐾 · 𝑀) gcd (𝐾 · 𝑁))))
2722, 24, 26mp2and 433 . . . . . . . . . . . 12 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝐾 ∥ ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)))
282nnne0d 9123 . . . . . . . . . . . . 13 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝐾 ≠ 0)
298nn0zd 9535 . . . . . . . . . . . . 13 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) ∈ ℤ)
30 dvdsval2 12267 . . . . . . . . . . . . 13 ((𝐾 ∈ ℤ ∧ 𝐾 ≠ 0 ∧ ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) ∈ ℤ) → (𝐾 ∥ ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) ↔ (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾) ∈ ℤ))
313, 28, 29, 30syl3anc 1252 . . . . . . . . . . . 12 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∥ ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) ↔ (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾) ∈ ℤ))
3227, 31mpbid 147 . . . . . . . . . . 11 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾) ∈ ℤ)
33 dvdscmulr 12297 . . . . . . . . . . 11 (((((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) → ((𝐾 · (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾)) ∥ (𝐾 · 𝑀) ↔ (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾) ∥ 𝑀))
3432, 4, 3, 28, 33syl112anc 1256 . . . . . . . . . 10 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾)) ∥ (𝐾 · 𝑀) ↔ (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾) ∥ 𝑀))
3520, 34mpbid 147 . . . . . . . . 9 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾) ∥ 𝑀)
3618simprd 114 . . . . . . . . . . 11 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) ∥ (𝐾 · 𝑁))
3716, 36eqbrtrd 4084 . . . . . . . . . 10 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 · (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾)) ∥ (𝐾 · 𝑁))
38 dvdscmulr 12297 . . . . . . . . . . 11 (((((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) → ((𝐾 · (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾)) ∥ (𝐾 · 𝑁) ↔ (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾) ∥ 𝑁))
3932, 6, 3, 28, 38syl112anc 1256 . . . . . . . . . 10 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾)) ∥ (𝐾 · 𝑁) ↔ (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾) ∥ 𝑁))
4037, 39mpbid 147 . . . . . . . . 9 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾) ∥ 𝑁)
41 dvdsgcd 12499 . . . . . . . . . 10 (((((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾) ∥ 𝑀 ∧ (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾) ∥ 𝑁) → (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾) ∥ (𝑀 gcd 𝑁)))
4232, 4, 6, 41syl3anc 1252 . . . . . . . . 9 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾) ∥ 𝑀 ∧ (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾) ∥ 𝑁) → (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾) ∥ (𝑀 gcd 𝑁)))
4335, 40, 42mp2and 433 . . . . . . . 8 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾) ∥ (𝑀 gcd 𝑁))
4411nn0zd 9535 . . . . . . . . 9 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∈ ℤ)
45 dvdscmul 12295 . . . . . . . . 9 (((((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾) ∈ ℤ ∧ (𝑀 gcd 𝑁) ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾) ∥ (𝑀 gcd 𝑁) → (𝐾 · (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾)) ∥ (𝐾 · (𝑀 gcd 𝑁))))
4632, 44, 3, 45syl3anc 1252 . . . . . . . 8 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾) ∥ (𝑀 gcd 𝑁) → (𝐾 · (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾)) ∥ (𝐾 · (𝑀 gcd 𝑁))))
4743, 46mpd 13 . . . . . . 7 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 · (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) / 𝐾)) ∥ (𝐾 · (𝑀 gcd 𝑁)))
4816, 47eqbrtrrd 4086 . . . . . 6 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) ∥ (𝐾 · (𝑀 gcd 𝑁)))
49 gcddvds 12450 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁))
50493adant1 1020 . . . . . . . . 9 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁))
5150simpld 112 . . . . . . . 8 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∥ 𝑀)
52 dvdscmul 12295 . . . . . . . . 9 (((𝑀 gcd 𝑁) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑀 → (𝐾 · (𝑀 gcd 𝑁)) ∥ (𝐾 · 𝑀)))
5344, 4, 3, 52syl3anc 1252 . . . . . . . 8 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑀 → (𝐾 · (𝑀 gcd 𝑁)) ∥ (𝐾 · 𝑀)))
5451, 53mpd 13 . . . . . . 7 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 · (𝑀 gcd 𝑁)) ∥ (𝐾 · 𝑀))
5550simprd 114 . . . . . . . 8 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∥ 𝑁)
56 dvdscmul 12295 . . . . . . . . 9 (((𝑀 gcd 𝑁) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑁 → (𝐾 · (𝑀 gcd 𝑁)) ∥ (𝐾 · 𝑁)))
5744, 6, 3, 56syl3anc 1252 . . . . . . . 8 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑁 → (𝐾 · (𝑀 gcd 𝑁)) ∥ (𝐾 · 𝑁)))
5855, 57mpd 13 . . . . . . 7 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 · (𝑀 gcd 𝑁)) ∥ (𝐾 · 𝑁))
5912nn0zd 9535 . . . . . . . 8 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 · (𝑀 gcd 𝑁)) ∈ ℤ)
60 dvdsgcd 12499 . . . . . . . 8 (((𝐾 · (𝑀 gcd 𝑁)) ∈ ℤ ∧ (𝐾 · 𝑀) ∈ ℤ ∧ (𝐾 · 𝑁) ∈ ℤ) → (((𝐾 · (𝑀 gcd 𝑁)) ∥ (𝐾 · 𝑀) ∧ (𝐾 · (𝑀 gcd 𝑁)) ∥ (𝐾 · 𝑁)) → (𝐾 · (𝑀 gcd 𝑁)) ∥ ((𝐾 · 𝑀) gcd (𝐾 · 𝑁))))
6159, 5, 7, 60syl3anc 1252 . . . . . . 7 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐾 · (𝑀 gcd 𝑁)) ∥ (𝐾 · 𝑀) ∧ (𝐾 · (𝑀 gcd 𝑁)) ∥ (𝐾 · 𝑁)) → (𝐾 · (𝑀 gcd 𝑁)) ∥ ((𝐾 · 𝑀) gcd (𝐾 · 𝑁))))
6254, 58, 61mp2and 433 . . . . . 6 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 · (𝑀 gcd 𝑁)) ∥ ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)))
63 dvdseq 12325 . . . . . 6 (((((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) ∈ ℕ0 ∧ (𝐾 · (𝑀 gcd 𝑁)) ∈ ℕ0) ∧ (((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) ∥ (𝐾 · (𝑀 gcd 𝑁)) ∧ (𝐾 · (𝑀 gcd 𝑁)) ∥ ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)))) → ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) = (𝐾 · (𝑀 gcd 𝑁)))
648, 12, 48, 62, 63syl22anc 1253 . . . . 5 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) = (𝐾 · (𝑀 gcd 𝑁)))
65643expib 1211 . . . 4 (𝐾 ∈ ℕ → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) = (𝐾 · (𝑀 gcd 𝑁))))
66 gcd0val 12447 . . . . . . 7 (0 gcd 0) = 0
67103adant1 1020 . . . . . . . . 9 ((𝐾 = 0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∈ ℕ0)
6867nn0cnd 9392 . . . . . . . 8 ((𝐾 = 0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∈ ℂ)
6968mul02d 8506 . . . . . . 7 ((𝐾 = 0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 · (𝑀 gcd 𝑁)) = 0)
7066, 69eqtr4id 2261 . . . . . 6 ((𝐾 = 0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 gcd 0) = (0 · (𝑀 gcd 𝑁)))
71 simp1 1002 . . . . . . . . 9 ((𝐾 = 0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝐾 = 0)
7271oveq1d 5989 . . . . . . . 8 ((𝐾 = 0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 · 𝑀) = (0 · 𝑀))
73 zcn 9419 . . . . . . . . . 10 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
74733ad2ant2 1024 . . . . . . . . 9 ((𝐾 = 0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℂ)
7574mul02d 8506 . . . . . . . 8 ((𝐾 = 0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 · 𝑀) = 0)
7672, 75eqtrd 2242 . . . . . . 7 ((𝐾 = 0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 · 𝑀) = 0)
7771oveq1d 5989 . . . . . . . 8 ((𝐾 = 0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 · 𝑁) = (0 · 𝑁))
78 zcn 9419 . . . . . . . . . 10 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
79783ad2ant3 1025 . . . . . . . . 9 ((𝐾 = 0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℂ)
8079mul02d 8506 . . . . . . . 8 ((𝐾 = 0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 · 𝑁) = 0)
8177, 80eqtrd 2242 . . . . . . 7 ((𝐾 = 0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 · 𝑁) = 0)
8276, 81oveq12d 5992 . . . . . 6 ((𝐾 = 0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) = (0 gcd 0))
8371oveq1d 5989 . . . . . 6 ((𝐾 = 0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 · (𝑀 gcd 𝑁)) = (0 · (𝑀 gcd 𝑁)))
8470, 82, 833eqtr4d 2252 . . . . 5 ((𝐾 = 0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) = (𝐾 · (𝑀 gcd 𝑁)))
85843expib 1211 . . . 4 (𝐾 = 0 → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) = (𝐾 · (𝑀 gcd 𝑁))))
8665, 85jaoi 720 . . 3 ((𝐾 ∈ ℕ ∨ 𝐾 = 0) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) = (𝐾 · (𝑀 gcd 𝑁))))
871, 86sylbi 121 . 2 (𝐾 ∈ ℕ0 → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) = (𝐾 · (𝑀 gcd 𝑁))))
88873impib 1206 1 ((𝐾 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) = (𝐾 · (𝑀 gcd 𝑁)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 712  w3a 983   = wceq 1375  wcel 2180  wne 2380   class class class wbr 4062  (class class class)co 5974  cc 7965  0cc0 7967   · cmul 7972   / cdiv 8787  cn 9078  0cn0 9337  cz 9414  cdvds 12264   gcd cgcd 12440
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085  ax-arch 8086  ax-caucvg 8087
This theorem depends on definitions:  df-bi 117  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-po 4364  df-iso 4365  df-iord 4434  df-on 4436  df-ilim 4437  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-recs 6421  df-frec 6507  df-sup 7119  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-div 8788  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-n0 9338  df-z 9415  df-uz 9691  df-q 9783  df-rp 9818  df-fz 10173  df-fzo 10307  df-fl 10457  df-mod 10512  df-seqfrec 10637  df-exp 10728  df-cj 11319  df-re 11320  df-im 11321  df-rsqrt 11475  df-abs 11476  df-dvds 12265  df-gcd 12441
This theorem is referenced by:  absmulgcd  12504  mulgcdr  12505  mulgcddvds  12582  qredeu  12585  coprimeprodsq  12746  pythagtriplem4  12757  2sqlem8  15767
  Copyright terms: Public domain W3C validator