ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  shftval4g GIF version

Theorem shftval4g 10812
Description: Value of a sequence shifted by -𝐴. (Contributed by Jim Kingdon, 19-Aug-2021.)
Assertion
Ref Expression
shftval4g ((𝐹𝑉𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift -𝐴)‘𝐵) = (𝐹‘(𝐴 + 𝐵)))

Proof of Theorem shftval4g
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 oveq1 5872 . . . . . 6 (𝑓 = 𝐹 → (𝑓 shift -𝐴) = (𝐹 shift -𝐴))
21fveq1d 5509 . . . . 5 (𝑓 = 𝐹 → ((𝑓 shift -𝐴)‘𝐵) = ((𝐹 shift -𝐴)‘𝐵))
3 fveq1 5506 . . . . 5 (𝑓 = 𝐹 → (𝑓‘(𝐴 + 𝐵)) = (𝐹‘(𝐴 + 𝐵)))
42, 3eqeq12d 2190 . . . 4 (𝑓 = 𝐹 → (((𝑓 shift -𝐴)‘𝐵) = (𝑓‘(𝐴 + 𝐵)) ↔ ((𝐹 shift -𝐴)‘𝐵) = (𝐹‘(𝐴 + 𝐵))))
54imbi2d 230 . . 3 (𝑓 = 𝐹 → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝑓 shift -𝐴)‘𝐵) = (𝑓‘(𝐴 + 𝐵))) ↔ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift -𝐴)‘𝐵) = (𝐹‘(𝐴 + 𝐵)))))
6 vex 2738 . . . 4 𝑓 ∈ V
76shftval4 10803 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝑓 shift -𝐴)‘𝐵) = (𝑓‘(𝐴 + 𝐵)))
85, 7vtoclg 2795 . 2 (𝐹𝑉 → ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift -𝐴)‘𝐵) = (𝐹‘(𝐴 + 𝐵))))
983impib 1201 1 ((𝐹𝑉𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift -𝐴)‘𝐵) = (𝐹‘(𝐴 + 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 978   = wceq 1353  wcel 2146  cfv 5208  (class class class)co 5865  cc 7784   + caddc 7789  -cneg 8103   shift cshi 10789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-coll 4113  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-resscn 7878  ax-1cn 7879  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-addcom 7886  ax-addass 7888  ax-distr 7890  ax-i2m1 7891  ax-0id 7894  ax-rnegex 7895  ax-cnre 7897
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-ral 2458  df-rex 2459  df-reu 2460  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-sub 8104  df-neg 8105  df-shft 10790
This theorem is referenced by:  climshft2  11280
  Copyright terms: Public domain W3C validator