ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  shftval4g GIF version

Theorem shftval4g 10779
Description: Value of a sequence shifted by -𝐴. (Contributed by Jim Kingdon, 19-Aug-2021.)
Assertion
Ref Expression
shftval4g ((𝐹𝑉𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift -𝐴)‘𝐵) = (𝐹‘(𝐴 + 𝐵)))

Proof of Theorem shftval4g
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 oveq1 5849 . . . . . 6 (𝑓 = 𝐹 → (𝑓 shift -𝐴) = (𝐹 shift -𝐴))
21fveq1d 5488 . . . . 5 (𝑓 = 𝐹 → ((𝑓 shift -𝐴)‘𝐵) = ((𝐹 shift -𝐴)‘𝐵))
3 fveq1 5485 . . . . 5 (𝑓 = 𝐹 → (𝑓‘(𝐴 + 𝐵)) = (𝐹‘(𝐴 + 𝐵)))
42, 3eqeq12d 2180 . . . 4 (𝑓 = 𝐹 → (((𝑓 shift -𝐴)‘𝐵) = (𝑓‘(𝐴 + 𝐵)) ↔ ((𝐹 shift -𝐴)‘𝐵) = (𝐹‘(𝐴 + 𝐵))))
54imbi2d 229 . . 3 (𝑓 = 𝐹 → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝑓 shift -𝐴)‘𝐵) = (𝑓‘(𝐴 + 𝐵))) ↔ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift -𝐴)‘𝐵) = (𝐹‘(𝐴 + 𝐵)))))
6 vex 2729 . . . 4 𝑓 ∈ V
76shftval4 10770 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝑓 shift -𝐴)‘𝐵) = (𝑓‘(𝐴 + 𝐵)))
85, 7vtoclg 2786 . 2 (𝐹𝑉 → ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift -𝐴)‘𝐵) = (𝐹‘(𝐴 + 𝐵))))
983impib 1191 1 ((𝐹𝑉𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift -𝐴)‘𝐵) = (𝐹‘(𝐴 + 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 968   = wceq 1343  wcel 2136  cfv 5188  (class class class)co 5842  cc 7751   + caddc 7756  -cneg 8070   shift cshi 10756
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-resscn 7845  ax-1cn 7846  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-sub 8071  df-neg 8072  df-shft 10757
This theorem is referenced by:  climshft2  11247
  Copyright terms: Public domain W3C validator