| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > shftval4g | GIF version | ||
| Description: Value of a sequence shifted by -𝐴. (Contributed by Jim Kingdon, 19-Aug-2021.) |
| Ref | Expression |
|---|---|
| shftval4g | ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift -𝐴)‘𝐵) = (𝐹‘(𝐴 + 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 5929 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (𝑓 shift -𝐴) = (𝐹 shift -𝐴)) | |
| 2 | 1 | fveq1d 5560 | . . . . 5 ⊢ (𝑓 = 𝐹 → ((𝑓 shift -𝐴)‘𝐵) = ((𝐹 shift -𝐴)‘𝐵)) |
| 3 | fveq1 5557 | . . . . 5 ⊢ (𝑓 = 𝐹 → (𝑓‘(𝐴 + 𝐵)) = (𝐹‘(𝐴 + 𝐵))) | |
| 4 | 2, 3 | eqeq12d 2211 | . . . 4 ⊢ (𝑓 = 𝐹 → (((𝑓 shift -𝐴)‘𝐵) = (𝑓‘(𝐴 + 𝐵)) ↔ ((𝐹 shift -𝐴)‘𝐵) = (𝐹‘(𝐴 + 𝐵)))) |
| 5 | 4 | imbi2d 230 | . . 3 ⊢ (𝑓 = 𝐹 → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝑓 shift -𝐴)‘𝐵) = (𝑓‘(𝐴 + 𝐵))) ↔ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift -𝐴)‘𝐵) = (𝐹‘(𝐴 + 𝐵))))) |
| 6 | vex 2766 | . . . 4 ⊢ 𝑓 ∈ V | |
| 7 | 6 | shftval4 10993 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝑓 shift -𝐴)‘𝐵) = (𝑓‘(𝐴 + 𝐵))) |
| 8 | 5, 7 | vtoclg 2824 | . 2 ⊢ (𝐹 ∈ 𝑉 → ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift -𝐴)‘𝐵) = (𝐹‘(𝐴 + 𝐵)))) |
| 9 | 8 | 3impib 1203 | 1 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift -𝐴)‘𝐵) = (𝐹‘(𝐴 + 𝐵))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 = wceq 1364 ∈ wcel 2167 ‘cfv 5258 (class class class)co 5922 ℂcc 7877 + caddc 7882 -cneg 8198 shift cshi 10979 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-resscn 7971 ax-1cn 7972 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-sub 8199 df-neg 8200 df-shft 10980 |
| This theorem is referenced by: climshft2 11471 |
| Copyright terms: Public domain | W3C validator |