![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > shftval4g | GIF version |
Description: Value of a sequence shifted by -𝐴. (Contributed by Jim Kingdon, 19-Aug-2021.) |
Ref | Expression |
---|---|
shftval4g | ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift -𝐴)‘𝐵) = (𝐹‘(𝐴 + 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 5884 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (𝑓 shift -𝐴) = (𝐹 shift -𝐴)) | |
2 | 1 | fveq1d 5519 | . . . . 5 ⊢ (𝑓 = 𝐹 → ((𝑓 shift -𝐴)‘𝐵) = ((𝐹 shift -𝐴)‘𝐵)) |
3 | fveq1 5516 | . . . . 5 ⊢ (𝑓 = 𝐹 → (𝑓‘(𝐴 + 𝐵)) = (𝐹‘(𝐴 + 𝐵))) | |
4 | 2, 3 | eqeq12d 2192 | . . . 4 ⊢ (𝑓 = 𝐹 → (((𝑓 shift -𝐴)‘𝐵) = (𝑓‘(𝐴 + 𝐵)) ↔ ((𝐹 shift -𝐴)‘𝐵) = (𝐹‘(𝐴 + 𝐵)))) |
5 | 4 | imbi2d 230 | . . 3 ⊢ (𝑓 = 𝐹 → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝑓 shift -𝐴)‘𝐵) = (𝑓‘(𝐴 + 𝐵))) ↔ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift -𝐴)‘𝐵) = (𝐹‘(𝐴 + 𝐵))))) |
6 | vex 2742 | . . . 4 ⊢ 𝑓 ∈ V | |
7 | 6 | shftval4 10839 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝑓 shift -𝐴)‘𝐵) = (𝑓‘(𝐴 + 𝐵))) |
8 | 5, 7 | vtoclg 2799 | . 2 ⊢ (𝐹 ∈ 𝑉 → ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift -𝐴)‘𝐵) = (𝐹‘(𝐴 + 𝐵)))) |
9 | 8 | 3impib 1201 | 1 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift -𝐴)‘𝐵) = (𝐹‘(𝐴 + 𝐵))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 978 = wceq 1353 ∈ wcel 2148 ‘cfv 5218 (class class class)co 5877 ℂcc 7811 + caddc 7816 -cneg 8131 shift cshi 10825 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-resscn 7905 ax-1cn 7906 ax-icn 7908 ax-addcl 7909 ax-addrcl 7910 ax-mulcl 7911 ax-addcom 7913 ax-addass 7915 ax-distr 7917 ax-i2m1 7918 ax-0id 7921 ax-rnegex 7922 ax-cnre 7924 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-riota 5833 df-ov 5880 df-oprab 5881 df-mpo 5882 df-sub 8132 df-neg 8133 df-shft 10826 |
This theorem is referenced by: climshft2 11316 |
Copyright terms: Public domain | W3C validator |